Abstract:
A body (2) for a catheter or sheath is disclosed. The body (2) includes strips (8, 10) formed longitudinally from the proximal (6) portion of the body (2) to the distal (4) portion of the body (2). The strips are formed of different materials. The strips can have different radiopacities, or can be splittable/peelable. The splittable/peelable body comprises a peel mechanism longitudinally extending along its respective length. The peel mechanism can be formed by longitudinally extending regions of interfacial bonding between first and second longitudinally extending strips of polymer material. A region of stress concentration extends along the region of interfacial bonding. The stress concentration facilitates the splitting of the body (2) along its peel mechanism. The polymer material of the first strip (8) can have a greater amount of radiopaque filler than the polymer material of the second strip (10). Each strip forms at least a portion of an outer circumferential surface of the body (2).
Abstract:
Catheter systems and methods are disclosed. An exemplary catheter includes an outer tubing housing and an inner fluid delivery tubing, the inner fluid delivery tubing having at least one fluid delivery port. The catheter also includes a deployment member movable axially within the inner fluid delivery tubing. A plurality of splines are each connected at a proximal end to the outer tubing and at a distal end to deployment member. A seal is provided between the outer tubing and the inner fluid delivery tubing. A gasket is provided between the deployment member and the inner fluid delivery tubing. Both the seal and the gasket are configured to prevent blood or other fluid from ingressing into the outer tubing.
Abstract:
The invention relates to biocompatible polycarbonate/polyamide polymer compositions for use in medical and surgical devices. Additional additives, crosslinking agents, phosphites, and optionally a radiopaque filler or fillers can be used to produce the high performance compositions desired. The polymer compositions have improved melt processability along with balanced or enhanced physical and mechanical properties, especially when combined or over-extruded onto or covering other polymer layers, such as soft and/or flexible layers commonly used in medical device applications and catheter tips, for example. The ability to incorporate radiopaque compounds into these polymer compositions during melt processing offers improved methods for monitoring and visualizing medical devices when used inside the body and as well as improving the operating characteristics of the medical device components.
Abstract:
The instant invention relates generally to catheters and to introducer catheters used to help deliver catheters or other medical devices to locations within the human body. In particular, the instant invention relates to large diameter catheters and introducer catheters having a torque transfer layer that includes at least two flat wires braided into a wire mesh. The flat wires have a width of at least about 0.007 inches and a depth of at least about 0.003 inches. The lumen diameter of the catheter is at least about 6 French. The torque transfer layer provides increased strength, flexibility, and kink resistance.
Abstract:
A method of manufacturing a catheter shaft includes the steps of forming an inner layer of a first polymeric material, forming a plait matrix layer including a second polymeric material about the inner layer, and forming an outer layer of a third polymeric material about the plait matrix layer. The plait matrix layer includes a braided wire mesh partially or fully embedded within the second polymeric material, which is different from at least one of the first polymeric material forming the inner layer and the third polymeric material forming the outer layer. The second polymeric material has a higher yield strain and/or a lower hardness than at least the first polymeric material, and preferably both the first and the third polymeric materials. The first polymeric material and the third polymeric material may be different or the same. The catheter shaft may be formed by stepwise extrusion, co-extrusion, and/or reflow processes.
Abstract:
The invention comprises self-lubricating polymer compositions that are especially useful in medical devices and valves and gaskets of medical devices. In a preferred embodiment, the polymer compositions comprise a thermosetting or thermoplastic silicone elastomer in combination with a lubricity enhancing polyfluoropolyether fluid or hydrocarbon-based synthetic oil. In other preferred embodiments, the polymer compositions contain only biocompatible components. The improved anti-friction properties of the self-lubricating polymers can be demonstrated over a course of insertion and withdrawal cycles, where conventional polymers have changing and mostly increasing force required for each insertion and withdrawal, while the polymer compositions of the invention remain stable.
Abstract:
The instant invention relates generally to catheters and to introducer catheters used to help deliver catheters or other medical devices to locations within the human body. In particular, the instant invention relates to large diameter catheters and introducer catheters having a torque transfer layer that includes at least two flat wires braided into a wire mesh. The flat wires have a width of at least about 0.007 inches and a depth of at least about 0.003 inches. The lumen diameter of the catheter is at least about 6 French. The torque transfer layer provides increased strength, flexibility, and kink resistance.
Abstract:
The instant invention relates generally to catheters and to introducer catheters used to help deliver catheters or other medical devices to locations within the human body. In particular, the instant invention relates to large diameter catheters and introducer catheters having a torque transfer layer that includes at least two flat wires braided into a wire mesh. The flat wires have a width of at least about 0.007 inches and a depth of at least about 0.003 inches. The lumen diameter of the catheter is at least about 6 French. The torque transfer layer provides increased strength, flexibility, and kink resistance.
Abstract:
The instant invention relates generally to catheters and to introducer catheters used to help deliver catheters or other medical devices to locations within the human body. In particular, the instant invention relates to large diameter catheters and introducer catheters having a torque transfer layer that includes at least two flat wires braided into a wire mesh. The flat wires have a width of at least about 0.007 inches and a depth of at least about 0.003 inches. The lumen diameter of the catheter is at least about 6 French. The torque transfer layer provides increased strength, flexibility, and kink resistance.
Abstract:
A method of manufacturing a catheter assembly generally includes providing a catheter shaft having an outer layer and an inner reinforcing layer; removing at least a portion of the outer layer from a length of the distal end of the catheter shaft in order to expose a distal segment thereof; providing an inner jacket segment; axially engaging the inner jacket segment with an interior surface of the distal segment of the catheter shaft; providing an outer jacket segment around at least the exposed exterior region of the distal segment of the catheter shaft; and bonding the distal segment of the catheter shaft to the inner jacket segment and the outer jacket segment.