Abstract:
A micro-electromechanical device includes a semiconductor substrate, in which a first microstructure and a second microstructure of reference are integrated. The first microstructure and the second microstructure are arranged in the substrate so as to undergo equal strains as a result of thermal expansions of the substrate. Furthermore, the first microstructure is provided with movable parts and fixed parts with respect to the substrate, while the second microstructure has a shape that is substantially symmetrical to the first microstructure but is fixed with respect to the substrate. By subtracting the changes in electrical characteristics of the second microstructure from those of the first, variations in electrical characteristics of the first microstructure caused by changes in thermal expansion or contraction can be compensated for.
Abstract:
Methods of forming micro-electromechanical device include a semiconductor substrate, in which a first microstructure and a second microstructure of reference are integrated. The first microstructure and the second microstructure are arranged in the substrate so as to undergo equal strains as a result of thermal expansions of the substrate. Furthermore, the first microstructure is provided with movable parts and fixed parts with respect to the substrate, while the second microstructure has a shape that is substantially symmetrical to the first microstructure but is fixed with respect to the substrate. By subtracting the changes in electrical characteristics of the second microstructure from those of the first, variations in electrical characteristics of the first microstructure caused by changes in thermal expansion or contraction can be compensated for.
Abstract:
A z-axis micro-electro-mechanical detection structure, having a substrate defining a plane and a suspended mass carried by two anchorage elements. The suspended mass includes a translating mass, suspended over the substrate, mobile in a transverse direction to the plane and arranged between the anchorage elements and two tilting masses, each of which is supported by the anchorage elements through respective elastic anchorage elements so as to be able to rotate with respect to respective oscillation axes. The oscillation axes are parallel to each other to enable a translation movement of the translating mass. Fixed electrodes face at a distance the tilting masses or the translating mass so as to be able to detect displacement of the suspended mass as a result of external forces. Elastic supporting elements are arranged between the translating mass and the tilting masses to enable relative rotation between the translating mass and the tilting masses.
Abstract:
An integrated microelectromechanical structure is provided with: a die, having a substrate and a frame, defining inside it a detection region and having a first side extending along a first axis; a driving mass, anchored to the substrate, set in the detection region, and designed to be rotated in a plane with a movement of actuation about a vertical axis; and a first pair and a second pair of first sensing masses, suspended inside the driving mass via elastic supporting elements so as to be fixed with respect thereto in the movement of actuation and so as to perform a detection movement of rotation out of the plane in response to a first angular velocity; wherein the first sensing masses of the first pair and the first sensing masses of the second pair are aligned in respective directions, having non-zero inclinations of opposite sign with respect to the first axis.
Abstract:
A driving mass of an integrated microelectromechanical structure is moved with a rotary motion about an axis of rotation, and a sensing mass is connected to the driving mass via elastic supporting elements so as to perform a detection movement in the presence of an external stress. The driving mass is anchored to an anchorage arranged along the axis of rotation by elastic anchorage elements. An opening is provided within the driving mass and the sensing mass is arranged within the opening. The elastic supporting and anchorage elements render the sensing mass fixed to the driving mass in the rotary motion, and substantially decoupled from the driving mass in the detection movement. The detection movement is a rotation about an axis lying in a plane. The sensing mass has, in plan view, a non-rectangular shape; in particular, the sensing mass has a radial geometry and, in plan view, the overall shape of a radial annulus sector.
Abstract:
An integrated microelectromechanical structure is provided with: a die, having a substrate and a frame, defining inside it a detection region and having a first side extending along a first axis; a driving mass, anchored to the substrate, set in the detection region, and designed to be rotated in a plane with a movement of actuation about a vertical axis; and a first pair and a second pair of first sensing masses, suspended inside the driving mass via elastic supporting elements so as to be fixed with respect thereto in the movement of actuation and so as to perform a detection movement of rotation out of the plane in response to a first angular velocity; wherein the first sensing masses of the first pair and the first sensing masses of the second pair are aligned in respective directions, having non-zero inclinations of opposite sign with respect to the first axis.