Abstract:
A stain compensating apparatus includes a camera, an input signal processing part, an edge compensating part and a stain compensating value generating part. The camera captures a display image from the display panel. The input signal processing part generates a luminance profile based on the display image captured by the camera. The edge compensating part compensates the luminance profile of a curved portion of the display panel. The stain compensating value generating part generates a stain compensating value for a pixel of the display panel using the compensated luminance profile.
Abstract:
An apparatus includes a controller to generate at least one pulse width modulated (PWM) signal to control a switch connected to a pixel circuit of a display device. The at least one PWM signal controls coupling of a current source or a current sink through the switch to the pixel circuit. When the PWM signal is applied during a first period, the PWM signal has a width sufficient to discharge a pixel capacitor. When the PWM signal is applied during a second period, the PWM signal has a width which is based on a data signal. The pixel circuit controls emission of light with a certain gray scale value based on the data signal.
Abstract:
A system and a method for luminance correction that can remove luminance spots of a display device. The system includes a display device, an image detection unit, and a luminance correction device. The display device includes a plurality of sub-pixels including first sub-pixels and corresponding second sub-pixels. The image detection unit is configured to measure respective luminance values of the first sub-pixels. The luminance correction device is configured to supply test data so that only the first sub-pixels emit light, and to calculate correction values corresponding to the plurality of sub-pixels based on difference values between the respective luminance values measured by the image detection unit and one or more target luminance values.
Abstract:
There is provided an organic light emitting display device and a method of driving the same. The organic light emitting display device includes pixels, a data driver, a scan driver to sequentially supply scan signals to scan lines, and a control line driver configured to supply emission control signals to emission control line. The data driver is to discharge the gate electrodes of the driving transistors of the pixels at a uniform discharge speed in a third period within a second period, wherein the second period is after the first period, the third period corresponds to a light emitting gray scale of each pixel, and after the second period, the pixels emit light.
Abstract:
A display device is disclosed. The device includes a display panel including a plurality of pixels, each connected to a corresponding scan line, a corresponding data line, and a corresponding initialization control line and configured to display an image according to a data signal. The device includes an initialization voltage controller to measure a threshold voltage deviation for driving transistors of the pixels, and to set different initialization voltages for the pixels of each of a plurality of regions.
Abstract:
An apparatus and method for compensating an image of a display device are disclosed. The image compensation apparatus of a display device comprises a scatterometer configured to analyze luminance of a display image according to a test initialization voltage and a test data voltage applied to a plurality of pixels and to measure a deviation of a threshold voltage of a driving transistor of the plurality of pixels; a voltage controller configured to divide the display panel into a predetermined area according to a deviation of a threshold voltage of the driving transistor and to calculate different initialization voltages that initialize driving of pixels included in the area on a predetermined area basis; and an initialization voltage supplier configured to apply a corresponding initialization voltage calculated in the voltage controller to the plurality of pixels included in the predetermined area.
Abstract:
A display device includes: a display panel including scan lines, data lines, and color pixels located at crossing regions of the scan lines and the data lines, each of the color pixels including a driving transistor, the color pixels including first color pixels, second color pixels, and third color pixels; a scan driver configured to transfer a scan signal; a data driver configured to transfer an image data signal; an initialization voltage controller configured to set different initialization voltages for each pixel during each frame according to a threshold voltage deviation for the driving transistor of each pixel and calculate the initialization voltages including first, second, and third initialization voltages corresponding to the plurality of color pixels; an initialization voltage driver configured to apply the calculated first, second, and third initialization voltages; and a signal controller configured to generate and transfer a control signal and the image data signals.
Abstract:
A system and a method for luminance correction that can remove luminance spots of a display device. The system includes a display device, an image detection unit, and a luminance correction device. The display device includes a plurality of sub-pixels including first sub-pixels and corresponding second sub-pixels. The image detection unit is configured to measure respective luminance values of the first sub-pixels. The luminance correction device is configured to supply test data so that only the first sub-pixels emit light, and to calculate correction values corresponding to the plurality of sub-pixels based on difference values between the respective luminance values measured by the image detection unit and one or more target luminance values.