Abstract:
A beam scanning device includes a light modulation array and a processor. The light modulation array is configured to scan an external space based on phase modulating a plurality of light beams and, in a state in which the plurality of light beams are arranged in a first direction, sequentially steering the plurality of light beams in a second direction different from the first direction. The processor is configured to control the light modulation array to cause a degree of steering shift of the light modulation array to vary depending on whether a region of interest is located in the external space.
Abstract:
A spatial light modulator and a light detection and ranging (LiDAR) apparatus including the spatial light modulator are provided. The spatial light modulator includes: a first reflective layer; a second reflective layer comprising a plurality of grating structures spaced apart from each other; a resonance layer provided between the first reflective layer and the second reflective layer; and a filling layer having a heat transfer coefficient of about 100 mW/mK or less and being in contact with an upper surface of the resonance layer while surrounding at least one grating structure of the plurality of grating structures.
Abstract:
A spatial light modulator and a beam steering apparatus including the same are provided. The spatial light modulator includes a first reflective layer; a cavity layer provided on the first reflective layer; and a reflective layer including a plurality of unit lattice structures that are provided on the cavity layer are and spaced apart from each other. Each of the plurality of unit lattice structures has a polycrystalline structure, and at least one grain of the polycrystalline structure has a column shape and a height equal to a height of the plurality of unit lattice structures.
Abstract:
Provided is a light modulator including a substrate, and a resonator configured to modulate a phase of incident light by modulating a refractive index based on an external stimulus, the resonator comprising a first reflective structure provided on the substrate, a cavity layer provided on the first reflective structure, and a second reflective structure provided on the cavity layer, wherein at least one of the first reflective structure or the second reflective structure comprises first material layers, second material layers that are alternately stacked with the first material layers, and a third material layer, and wherein each of the first material layers has a first refractive index, each of the second material layers has a second refractive index that is different from the first refractive index, and the third material layer has a third refractive index that is different from the first refractive index
Abstract:
A beam steering apparatus includes a substrate; at least one light source provided on the substrate; a first waveguide configured to transmit a first light beam radiated from the at least one light source; at least one beam splitter configured to split the first light beam transmitted by the first waveguide to obtain a second light beam; a second waveguide configured to receive the second light beam; and a quantum dot optical amplifier provided on the second waveguide and comprising a barrier layer, a quantum dot layer, and a wetting layer, the quantum dot optical amplifier being configured to modulate a phase of the second light beam, and to amplify an intensity of the second light beam.
Abstract:
Provided are an optical modulation device and a method of operating the same. The optical modulation device may include a nano-antenna, a conductor, and an active layer located between the nano-antenna and the conductor. The optical modulation device may further include a first dielectric layer located between the active layer and the conductor and a second dielectric layer located between the active layer and the nano-antenna. The optical modulation device may further include a signal applying unit configured to independently apply an electrical signal to at least two of the nano-antenna, the active layer, and the conductor.
Abstract:
Provided are a hybrid photon device including an etch stop layer and a method of manufacturing the hybrid photon device. The hybrid photon device includes: a silicon substrate including a waveguide on a surface thereof; a front etch stop layer and a rear etch stop layer disposed on a surface of the waveguide, the front and rear etch stop layers formed respectively to either side of the first region in a length direction of the waveguide; and a group III/V light-emitting unit generating light on a region of the silicon substrate between the front and rear etch stop layers.
Abstract:
A fingerprint sensor for reinforcing an electric field and preventing electric interference between adjacent electrodes. The fingerprint sensor includes a plurality of sensor electrodes provided on a substrate, an insulating layer, and a discontinuous grid formed in the insulating layer. The discontinuous grid includes a plurality of walls that are arranged in a two-dimensional (2D) manner. The plurality of walls are electrically insulated from each other.
Abstract:
A packaging system of an electronic device, in which the electronic device is mounted on a circuit board, may comprise: a first jig having a groove configured to contain the electronic device, the first jig having a surface on which a plurality of aligning posts are prepared to protrude; a circuit board supporting member connected to the circuit board to support the circuit board, the circuit board supporting member including a plurality of first guide holes into which the aligning posts are inserted; and/or a second jig configured to apply pressure to the circuit board and including a plurality of second guide holes into which the aligning posts are inserted.
Abstract:
Provided are capacitive micromachined ultrasonic transducer (CMUT) probes that use wire bonding. A CMUT probe includes a CMUT chip which includes a plurality of first electrode pads which are disposed on a first surface thereof, a printed circuit board (PCB) which is disposed on the first surface of the CMUT chip and which is configured to expose the plurality of first electrode pads, a plurality of second electrode pads which are disposed on the PCB and which correspond to respective ones of the plurality of first electrode pads, and a plurality of wires which connect each respective one of the plurality of first electrode pads to the corresponding one of the plurality of second electrode pads.