Abstract:
Beam-steered millimeter wave signals transmitted in each of n sector slices include a sequence of primary synchronization (PSCH) symbols within predetermined symbol positions in at least one slot of a subframe. The symbols in consecutive symbol positions are each transmitted on a different one of the n slices, with the first symbol repeated on the same slice at the end. The sequence order rotates cyclically in each subframe so that two PSCH symbols are transmitted on one slice in a single subframe every nth subframe. Secondary synchronization (SSCH) and Broadcast Channel (BCH) symbols are transmitted in a predetermined pattern following the sequence of PSCH symbols. By transmitting consecutive PSCH symbols on different slices and repeating the first symbol, the mobile station can detect the best slice and beam by switching receive beams every subframe instead of every slot, relaxing time constraints on AGC adjustment while avoiding the start-at-the-edge problem.
Abstract:
A method for a transceiver calibration and antenna array operation in a multi-input multi-output (MIMO) system. The method comprises sending a calibration signal and a pre-designed training sequence, via a coupling network, receiving a calibration signal and a pre-designed training sequence that is sent a the transceiver array in a time slotted pattern via a coupling network, generating an Rx calibration measurement (R1) based on one or more uplink signals received via antenna array and the coupling network, generating a Tx calibration measurement (T1) based on receipt of the calibration signal from each of antennas via the coupling network; and performing a joint Tx/Rx (TRx) calibration based on HR, R1, and T1, where H is a channel response in air interface, R is a channel response of receivers in transceiver array.
Abstract:
A method of base station (BS) in a wireless communication system. the method comprises identifying a set of transmission parameters comprising a numerology, wherein the numerology includes a subcarrier spacing, determining a plurality of baseband signal generation chains each of which includes the set of transmission parameters comprising different numerology, and transmitting, at least one user equipment (UE), downlink signals comprising the set of transmission parameters using a multi-user multi-input multi-output (MU-MIMO).
Abstract:
A method of providing multiple station beam refinement in a mmWave wireless network comprising an access point (AP) and a plurality of stations (STAs) is provided. The method includes providing an AP configured to selectively transmit wireless signals to a plurality of directional sectors and to selectively receive wireless signals from the plurality of directional sectors. The method further includes operating the AP to at least one of provide simultaneous transmit beam refinement for the plurality of STAs, provide simultaneous receive beam refinement for the plurality of STAs, receive simultaneous transmit beam refinement from the plurality of STAs, and receive simultaneous receive beam refinement from the plurality of STAs.
Abstract:
A mobile station is configured to scan cells in a wireless network. The mobile station includes at least one antenna configured to transmit and receive wireless signals. The mobile station also includes a processor coupled to the at least one antenna, the processor configured to scan for one or more neighboring base station cells in a same frequency band as a serving base station cell using one or more receive beams. The one or more receive beams used for scanning are different than receive beams used for data communication with the serving base station cell.
Abstract:
A method of base station (BS) in a wireless communication system. the method comprises identifying a set of transmission parameters comprising a numerology, wherein the numerology includes a subcarrier spacing, determining a plurality of baseband signal generation chains each of which includes the set of transmission parameters comprising different numerology, and transmitting, at least one user equipment (UE), downlink signals comprising the set of transmission parameters using a multi-user multi-input multi-output (MU-MIMO).
Abstract:
To reduce the duration of a cyclic prefix used for a multiple input, multiple output (MIMO) communications channel, delay spread variations for different transmit/receive beam pair combination is estimated and used for fast beam switching and to support single user MIMO (SU-MIMO) even when the CP difference between two beams is large. Beam switching reference signals are employed to estimate delay spread exceeding current CP, and to support beam switching. CP covering sub-clusters within clusters for the MIMO channel are exploited to reduce the CP requirement and improve efficiency. Any one of a number of different CP durations may be selected for each different mobile station, using one of a finite set of subframe configurations for which the CP durations of different symbol locations within the subframe are predefined. Dynamically switching subframe configurations by the system accommodates high mobility.
Abstract:
An apparatus includes a baseband signal processing block, processing circuitry, and at least one radio frequency (RF) communication module communicably coupled to the baseband signal processing block and configured to communicate using a selected mode of communication in a channel. The processing circuitry is configured to detect a sub-channel band of unavailable spectrum within the channel, the band of unavailable spectrum being less than a whole of the channel. The channel includes one contiguous band of frequencies divisible into at least two non-overlapping non-adjacent sub-channels. The processing circuitry is configured to select one mode of communication selected from a plurality of modes including: a carrier aggregation (CA) only mode, a multiple input multiple output (MIMO) only mode, and a carrier aggregation multiple input multiple output (CA-MIMO) hybrid mode.
Abstract:
Methods and apparatuses manage beam selection. A method for a mobile station (MS) includes identifying beamforming constraints of the MS. The method also includes performing measurement on a channel between a base station (BS) and the MS on at least one transmit (TX) beam and at least one receive (RX) beam. Additionally, the method includes sending beamforming feedback information based on the identified constraints of the MS and the channel measurement. A method for a base station (BS) includes receiving beamforming feedback information comprising at least one of radio frequency beamforming constraints of a mobile station or channel measurement information on a channel between the BS and the MS. Additionally, the method includes sending, to the MS, control information comprising an indication of at least one of MS RX beams or BS TX beams to be used in downlink communication with the MS based on the received beamforming feedback information.
Abstract:
A base station is capable of communicating with a plurality of subscriber stations using a beamforming scheme that varies beams over different time instances. The base station includes a plurality of antenna arrays configured to transmit N spatial beams and carry a reference symbols corresponding to specific spatial beams. The base station also includes NRF number of radio frequency (RF) processing chains coupled to respective ones of the plurality of antenna arrays, wherein N>>NRF. The subscriber station includes MRF processing receive paths configured to receive M number of beams from the base station.