Abstract:
A method is provided for moving off of a vehicle with a hybrid drive line, comprising a combustion engine; a gearbox with input shaft connected to the combustion engine and output shaft; a first planetary gear, which is connected to the input shaft, a first main shaft; a second planetary gear connected to the first planetary gear and a second main shaft; a first and second electrical machines respectively connected to the first and second planetary gears; a gear pair connected with the first main shaft; and a gear pair connected with the second main shaft. The method comprises: a) ensuring that the rotatable components of the first and second planetary gears are respectively disconnected from each other, b) ensuring that the corresponding gear pairs are engaged, and c) activating the first and second electrical machines so that a torque is generated in the output shaft.
Abstract:
A gearbox that includes an input shaft (8) and an output shaft (20); a first epicyclic gear (10) that is connected to the input shaft (8); a second epicyclic gear (12) that is connected to the first epicyclic gear (10); a first electrical machine (14) that is connected to the first epicyclic gear (10); a second electrical machine (16) that is connected to the second epicyclic gear (12); a first gear pair (60) that is arranged between the first epicyclic gear (10) and the output shaft (20); and a second gear pair (66) that is arranged between the second epicyclic gear (12) and the output shaft (20). A side shaft (18) is arranged between one of the epicyclic gears (10, 12) and the output shaft (20) (18) and connected to the output shaft (20) through a final gear, (21) (21) which includes a gear element (92), that is arranged at the side shaft (18) in a disengagable manner. Also, disclosed is a method for controlling the gearbox. Also a vehicle (1) that includes such a gearbox (2), and a method to control such a gearbox (2). Also a computer program (P) to control a gearbox (2).
Abstract:
A gearbox having an input shaft (8) and an output shaft (20); a first epicyclic gear (10) connected to the input shaft (8); a second epicyclic gear (12) connected to the first epicyclic gear (10); a first electrical machine (14) connected to the first epicyclic gear (10); a second electrical machine (16) connected to the second epicyclic gear (12); a first main shaft (34) connected to the first epicyclic gear (10); a second main shaft (36) connected to the second epicyclic gear (12). A first coupling unit (56) disengagingly connects two rotatable components (22, 26, 50) at the first epicyclic gear (10), and a second coupling unit (58) disengagingly connects two rotatable components (28, 32, 51) at the second epicyclic gear (12), such that at least one of the rate of revolution and the torque at the first and the second main shafts (34, 36) can be influenced by controlling at least one of the first and the second coupling units (56, 58) to a condition of the rotatable components (22, 26, 50; 28, 32, 51) that is engaged or disengaged. Also a vehicle (1) having such a gearbox (2), a method to control such a gearbox (2), a computer program (P) to control a gearbox, and a computer program product comprising program code for an electronic control unit (48) or another computer (53) in order to implement the method.
Abstract:
A method for obtaining gear shifting of a vehicle, where the vehicle has a planetary gearing in the drive train, a combustion engine with an output shaft connected to a rotor of a second electric machine and to a first component of the planetary gearing, a first electric machine with a rotor connected to a third component of the planetary gearing and an input shaft of a gearbox connected to a second component of the planetary gearing. The method is started with the components of the planetary gearing interlocked by a locking means, in which they are released during the gear shifting and interlocked again after the gear shifting has been carried out.
Abstract:
The present invention relates to a hybrid powertrain and method of controlling same, the hybrid powertrain comprising an internal combustion engine; a gearbox with an input and an output shaft; a range gearbox connected to the output shaft; a first planetary gear connected to the input shaft; a second planetary gear connected to the first planetary gear; a first electrical machine connected to the first planetary gear; a second electrical machine connected to the second planetary gear; one gear pair connected with the first planetary gear and the output shaft; and one gear pair connected with the second planetary gear and the output shaft, wherein the internal combustion engine is connected with the first planetary gear via the input shaft. The range gearbox comprises a third planetary gear with a third sun wheel and a third planetary wheel carrier and a fourth clutch device arranged to connect and disconnect the third sun wheel with/from the third planetary wheel carrier.
Abstract:
Provided is a method to control a hybrid powertrain to achieve a reverse drive, wherein the hybrid powertrain comprises an internal combustion engine; a gearbox with an input and output shaft; a first planetary gear connected to the input shaft and a first main shaft; a second planetary gear connected to the first planetary gear and a second main shaft; first and second electrical machines respectively connected to the first and second planetary gears; one gear pair connected with the first main shaft and the output shaft; and one gear pair connected with the second main shaft and the output shaft, wherein the internal combustion engine is connected with the first planetary gear via the input shaft. The method comprises: ensuring that moveable component parts in the first planetary gear are disconnected from each other and/or that moveable component parts in the second planetary gear are disconnected from each other; ensuring that an output shaft in the internal combustion engine is prevented from rotating; and controlling the first electrical machine and/or second electrical machine to achieve a negative torque in the output shaft via the first main shaft and/or second main shaft.
Abstract:
A method is provided to control a hybrid powertrain comprising an internal combustion engine; a gearbox with input and output shafts; a range gearbox connected to the output shaft; a first planetary gear, connected to the input shaft; a second planetary gear, connected to the first planetary gear; first and second electrical machines, respectivley connected to the first and second planetary gears; a gear pair connected with the first planetary gear and the output shaft; and a gear pair, connected with the second planetary gear and the output shaft, wherein the internal combustion engine is connected to the input shaft. The method comprises: a) engaging a gear by connecting two rotatable components in the first planetary gear; b) connecting the second or the fourth gear pair; c) connecting a sixth gear pair, arranged between a countershaft and the range gearbox to the countershaft, so that the countershaft is connected with the output shaft via the range gearbox; d) synchronising the rotational speed between two rotatable components in the range gearbox; e) connecting the rotatable components with a shiftable third clutch device; and f) engaging a gear by way of connecting two rotatable components in the second planetary gear.
Abstract:
The invention relates to a method to start a combustion engine in a hybrid powertrain by a) disconnecting rotatable components of a first planetary gear from each other, b) disconnecting rotatable components of a second planetary gear from each other, c) preventing rotation of at least one gear pair, which is connected with the first planetary gear and an output shaft and at least one gear pair, which is connected with the second planetary gear and the output shaft, prevent rotation of the output shaft, and e) activating a first electrical machine connected to the first planetary gear, and/or a second electrical machine connected to the second planetary gear, so that the combustion engine starts.
Abstract:
A method is provided to start a combustion engine in a hybrid powertrain, comprising a gearbox with input and output shafts; a first planetary gear, connected to the input shaft and a first main shaft; a second planetary gear connected to the first planetary gear and a second main shaft; first and second electrical machines respectively connected to the first and second planetary gears; one gear pair connected with the first main shaft, and therefore with the first planetary gear and the output shaft; and one gear pair connected with the second main shaft. The method comprises: a) connecting an output shaft of the combustion engine with the input shaft of the gearbox, via a coupling device arranged between the output shaft and the input shaft; and b) controlling the first and second electrical machines to start the combustion engine.
Abstract:
Method is disclosed to start a combustion engine in a hybrid powertrain, comprising a gearbox with input and output shafts; a first planetary gear connected to the input shaft and a first main shaft; a second planetary gear connected to the first planetary gear and a second main shaft; first and second electrical machines respectively connected to the first and second planetary gears; a gear pair connected with the first main shaft, first planetary gear, and output shaft; and a gear pair connected with the second main shaft, second planetary gear and output shaft. The method comprises: determining a desired torque in the output shaft and a torque in a combustion engine output shaft required to start the combustion engine and controlling the first and second electrical machines such that the desired torque in the output shaft and the torque required in the combustion engine output shaft is achieved.