Abstract:
The present invention relates to a hybrid powertrain, comprising an internal combustion engine; a gearbox with an input shaft and an output shaft; a first planetary gear, connected to the input shaft; a second planetary gear, connected to the first planetary gear; a first electrical machine, connected to the first planetary gear; a second electrical machine, connected to the second planetary gear; at least one gear pair, connected with the first planetary gear and the output shaft; and at least one gear pair, connected with the second planetary gear and the output shaft, wherein the internal combustion engine is connected with the first planetary gear via the input shaft, wherein a countershaft is arranged between the respective first and second planetary gears and the output shaft; and the countershaft is connected with the output shaft via a range gearbox.
Abstract:
A method is provided for moving off of a vehicle with a hybrid powertrain, comprising a combustion engine; a gearbox with input and output shafts; a first planetary gear connected to the input shaft and a first main shaft; a second planetary gear connected to the first planetary gear and a second main shaft; first and second electrical machines respectively connected to the first and second planetary gears and capable of operating each other; one gear pair connected with the first planetary gear and output shaft; and one gear pair connected with the second planetary gear and output shaft. The method comprising, while the combustion engine is in operation: a) ensuring that the rotatable components of the first and second planetary gears are respectively disconnected from each other, b) ensuring that at least one gear is engaged, corresponding to the one gear pair connected with the first planetary gear, and/or the one gear pair connected with the second planetary gear, and c) activating the first and second electrical machines, where total power output from the electrical machines is zero, and so that a torque is generated in the output shaft.
Abstract:
A method is provided to control a hybrid powertrain, comprising a combustion engine; a gearbox with input and output shafts, which combustion engine is connected to the input shaft; a first planetary gear connected to the input shaft; a second planetary gear connected to the first planetary gear; first and second electrical machines respectfully connected to the first and second planetary gears; first gear pair connected with the first planetary gear and output shaft; and second gear pair connected with the second planetary gear and output shaft. The method comprises: a) engaging gears in the first and second gear pairs; and b) connecting two rotatable components in the second planetary gear with a second coupling device.
Abstract:
A method is provided to control a hybrid powertrain, comprising a combustion engine; a gearbox with an input shaft connected to the combustion engine and an output shaft; a first planetary gear connected to the input shaft a second planetary gear connected to the first planetary gear; first and second electrical machines respectively connected to the first and second planetary gears; first gear pair connected with the first planetary gear and the output shaft; and second gear pair connected with the second planetary gear and the output shaft. The method comprises: a) engaging gears corresponding to the first gear pair and to the second gear pair; and b) connecting a second sun wheel, arranged in the second planetary gear and a second planetary wheel carrier with each other, with the use of a second coupling device.
Abstract:
A drive system for a vehicle comprises an electrical machine, arranged between a combustion engine and an input shaft to a gearbox. The rotor of the electrical machine is connected with a component of a planetary gear, and the input shaft of the gearbox is connected with another component of such planetary gear. A first locking means may be moved between a locked position, in which the planetary gear's three components rotate at the same rotational speed, and a release position, in which the components are allowed to rotate at different rotational speeds. A second locking means is moveable between a locked position in which the output shaft of the combustion engine is locked together with a component in the planetary gear, and a release position, in which the combustion engine's output shaft is decoupled from such a component.
Abstract:
A drive system for a vehicle comprises two electrical machines arranged between a combustion engine and an input shaft to a gearbox. The first electrical machine rotor is connected with a planetary gear component, and the input shaft of the gearbox is connected with another planetary gear component. The second electrical machine rotor is connected via a transmission with the output shaft of the combustion engine, which is connected with another planetary gear component. A first locking means may be moved between a locked position, wherein the planetary gear's components rotate at the same rotational speed, and a release position wherein the components rotate at different rotational speeds. A second locking means may be moved between a locked position, and a release position wherein the output shaft of the combustion engine is locked in the locked position and disconnected in the release position with said additional planetary gear component.
Abstract:
In a method for controlling a vehicle with a drive system comprising an output shaft in a combustion engine, a planetary gear and a first and second electrical machine connected to the planetary gear, the turning off of the combustion engine is achieved when the vehicle is driven with the combustion engine running, and a transition to operation of the vehicle with the electrical machines is achieved by ensuring that the second electrical machine's rotor is connected with the combustion engine's output shaft, that injection of fuel into the combustion engine is interrupted and that the second electrical machines rotational speed is controlled towards and until a standstill, whereupon the combustion engine's output shaft is disconnected from the second electrical machine and the planetary gear.
Abstract:
A gearbox having an input shaft (8) and an output shaft (20); a first epicyclic gear (10) connected to the input shaft (8); a second epicyclic gear (12) connected to the first epicyclic gear (10); a first electrical machine (14) connected to the first epicyclic gear (10); a second electrical machine (16) connected to the second epicyclic gear (12); a first main shaft (34) connected to the first epicyclic gear (10); a second main shaft (36) connected to the second epicyclic gear (12). A first coupling unit (56) disengagingly connects two rotatable components (22, 26, 50) at the first epicyclic gear (10), and a second coupling unit (58) disengagingly connects two rotatable components (28, 32, 51) at the second epicyclic gear (12), such that at least one of the rate of revolution and the torque at the first and the second main shafts (34, 36) can be influenced by controlling at least one of the first and the second coupling units (56, 58) to a condition of the rotatable components (22, 26, 50; 28, 32, 51) that is engaged or disengaged. Also a vehicle (1) having such a gearbox (2), a method to control such a gearbox (2), a computer program (P) to control a gearbox, and a computer program product comprising program code for an electronic control unit (48) or another computer (53) in order to implement the method.
Abstract:
A method for obtaining gear shifting of a vehicle, where the vehicle has a planetary gearing in the drive train, a combustion engine with an output shaft connected to a rotor of a second electric machine and to a first component of the planetary gearing, a first electric machine with a rotor connected to a third component of the planetary gearing and an input shaft of a gearbox connected to a second component of the planetary gearing. The method is started with the components of the planetary gearing interlocked by a locking means, in which they are released during the gear shifting and interlocked again after the gear shifting has been carried out.
Abstract:
The present invention relates to a hybrid powertrain and method of controlling same, the hybrid powertrain comprising an internal combustion engine; a gearbox with an input and an output shaft; a range gearbox connected to the output shaft; a first planetary gear connected to the input shaft; a second planetary gear connected to the first planetary gear; a first electrical machine connected to the first planetary gear; a second electrical machine connected to the second planetary gear; one gear pair connected with the first planetary gear and the output shaft; and one gear pair connected with the second planetary gear and the output shaft, wherein the internal combustion engine is connected with the first planetary gear via the input shaft. The range gearbox comprises a third planetary gear with a third sun wheel and a third planetary wheel carrier and a fourth clutch device arranged to connect and disconnect the third sun wheel with/from the third planetary wheel carrier.