Abstract:
A system and method for controlling a characteristic of at least one memory cell on a semiconductor is disclosed. The at least one memory cell includes a gate stack, a source, and a drain. The semiconductor includes a surface. In one aspect, the method and system include providing the gate stack on the semiconductor and providing the source including a source dopant having a local peak in concentration. The local peak in concentration of the source dopant is located under the gate stack and in proximity to a portion of the surface of the semiconductor. In another aspect the method and system includes a memory cell on a semiconductor. The semiconductor includes a surface. The memory cell includes a gate stack on the semiconductor, a source, and a drain. The gate stack has a first edge and a second edge. The source is located in proximity to the first edge of the gate stack. The drain is located in proximity to the second edge of the gate stack. A first portion of the source is disposed under the gate stack. The source includes a source dopant having a local peak in concentration of the source dopant. The local peak in concentration of the source dopant is located under the gate stack and in proximity to a portion of the surface of the semiconductor.
Abstract:
The present invention provides a method and system for the formation of semiconductor devices which reduces band-to-band tunneling current and short-channel effects. The method and system includes implanting first low-dose arsenic into an area in the substrate, thermally diffusing the first low-dose arsenic through a portion of the substrate, implanting a second higher-dose arsenic into the area in the substrate, and diffusing the second higher-dose arsenic into the area in the substrate. Under the present invention, the combination of the first and second arsenic implants has a graded lateral profile which reduces band-to-band tunneling current and short-channel effects. The method also improves the reliability and performance of the semiconductor devices.
Abstract:
A method and apparatus for reducing band-to-band currents during the erasure of a flash EEPROM memory cell is provided. The apparatus has a back biasing connection on the substrate at which a biasing voltage is applied during erasure of the flash EEPROM memory cell. The method of applying the biasing voltage to the back biasing connection during erasure of the flash EEPROM memory cell reduces band-to-band current between the source region and the substrate during erasure of the flash memory cell. This reduction provides for gate size reduction in flash memory cells without inducing detrimental short channel effects.
Abstract:
A CMOS circuit is provided that includes a PMOS transistor, an NMOS transistor adjacent the PMOS transistor in a channel width direction, a compressive stress liner overlying the PMOS transistor, and a tensile stress liner overlying the NMOS transistor. A portion of the compressive stress liner and a portion of the tensile stress liner are in a stacked configuration, and an overlap region of the compressive stress liner and the tensile stress liner is sufficient to result in an enhanced transverse stress in the compressive stress liner or the tensile stress liner.
Abstract:
A semiconductor device is disclosed having a conductive gate structure overlying a semiconductor layer having a major surface. An isolation material is recessed within a trench region below the major surface of the semiconductor layer. An epitaxial layer is formed overlying a portion of the major surface and on an active region forming a sidewall of the trench.
Abstract:
A stress enhanced CMOS circuit and methods for its fabrication are provided. One fabrication method comprises the steps of forming an NMOS transistor and a PMOS transistor adjacent the NMOS transistor in a channel width direction, the PMOS transistor and the NMOS transistor separated by an isolation region. A compressive stress liner is deposited overlying the transistors and the isolation region and is etched to remove the compressive stress liner from the NMOS transistor and from a portion of the isolation region. A tensile stress liner is deposited overlying the transistors, the isolation region, and the compressive stress liner and is etched to remove a portion of the tensile stress liner overlying a portion of the compressive stress liner and to leave the tensile stress liner overlying the NMOS transistor, the isolation region, and a portion of the compressive stress liner.
Abstract:
A sidewall spacer structure is formed adjacent to a gate structure whereby a material forming an outer surface of the sidewall spacer structure contains nitrogen. Subsequent to its formation the sidewall spacer structure is annealed to harden the sidewall spacer structure from a subsequent cleaning process. An epitaxial layer is formed subsequent to the cleaning process.
Abstract:
A method of manufacturing a semiconductor device, comprising steps of: (a) providing a semi conductor substrate including at least one dopant species-containing region extending to a surface of the substrate; (b) forming a thin liner oxide layer on the surface of the substrate; and (c) incorporating in the thin line oxide layer at least one species which substantially prevents, or at least reduces, segregation therein of the dopant species arising from movement thereinto from the at least one dopant species-containing region.
Abstract:
A method is provided, the method including forming a gate dielectric above a substrate layer, and forming a gate conductor above the gate dielectric. The method also includes forming at least one dielectric isolation structure in the substrate adjacent the gate dielectric.
Abstract:
Submicron-dimensioned MOS and/or CMOS transistors are fabricated utilizing a simplified removable sidewall spacer technique, enabling effective tailoring of individual transistors to optimize their respective functionality. Embodiments include forming a first sidewall spacer having a first thickness on the side surfaces of a plurality of gate electrodes of transistors, selectively removing the first sidewall spacers from the gate electrodes of certain transistors, and then depositing second sidewall spacers on remaining first sidewall spacers and on the side surfaces of the gate electrodes from which the first sidewall spacers have been removed. Embodiments enable separately tailoring n- and p-MOS transistors as well as individual n- or p-MOS transistors having different functionality, e.g., different drive current and voltage leakage requirements.