摘要:
A semiconductor substrate for forming a pixel area provided surfacially with a plurality of pixels for photoelectric conversion, the semiconductor substrate, including a polysilicon film of a thickness of 0.5-2.0, on a rear surface of the pixel area-bearing surface, and having an oxygen concentration of 1.3-1.5E+18 atom/cm3 (old ASTM).
摘要翻译:一种用于形成像素区域的半导体衬底,其具有多个用于光电转换的像素,所述半导体衬底包括厚度为0.5-2.0的多晶硅膜,在像素区域承载表面的后表面上,并且具有 氧浓度为1.3E18-1.5E18原子/ cm 3(旧ASTM)。
摘要:
The solid state image pickup device includes a pixel, the pixel including: a photoelectric conversion region for generating carrier by photoelectric conversion and accumulating the carrier; a carrier holding region for accumulating carrier flowing out from the photoelectric conversion region during the photoelectric conversion region generates and accumulates carrier; a source follower amplifier SF-MOS for amplifying carrier; a transfer MOS transistor Tx-MOS for transferring the carrier accumulated in the photoelectric conversion region to the source follower amplifier SF-MOS; and a transfer MOS transistor Ty-MOS for transferring the carrier accumulated in the carrier holding region to the source follower amplifier SF-MOS. The carrier holding region is formed so as to have a trench structure.
摘要:
A method is provided for manufacturing a semiconductor device that includes a multilayer wiring structure in which insulating layers and wiring layers each with a plurality of conductor lines are alternately stacked on each other. The method includes steps of forming a first wiring layer on a first insulating layer, detecting a defect in the first wiring layer on the first insulating layer, and determining whether or not the defect is to be irradiated with a focused ion beam, according to a detection result. If it is determined that the defect is to be irradiated, the defect is irradiated with a focused ion beam and then a second insulating layer is formed on the first wiring layer disposed on the first insulating layer. If it is determined that the defect is not to be irradiated with a focused ion beam, the second insulating layer is formed on the first wiring layer disposed on the first insulating layer without irradiating the defect.
摘要:
The solid state image pickup device includes a pixel, the pixel including: a photoelectric conversion region for generating carrier by photoelectric conversion and accumulating the carrier; a carrier holding region for accumulating carrier flowing out from the photoelectric conversion region during the photoelectric conversion region generates and accumulates carrier; a source follower amplifier SF-MOS for amplifying carrier; a transfer MOS transistor Tx-MOS for transferring the carrier accumulated in the photoelectric conversion region to the source follower amplifier SF-MOS; and a transfer MOS transistor Ty-MOS for transferring the carrier accumulated in the carrier holding region to the source follower amplifier SF-MOS. The carrier holding region is formed so as to have a trench structure.
摘要:
The image sensing device includes a semiconductor substrate; a light shielding layer that is arranged above the semiconductor substrate and shields an optical black region and a peripheral region from light; a first capacitance element that is arranged between the light shielding layer in the peripheral region and the semiconductor substrate and is used to temporarily hold signals output from effective pixels or optical black pixels; and a second capacitance element that is arranged between the light shielding layer in the optical black region and the semiconductor substrate so as to shield the photoelectric conversion units of the optical black pixels from light.
摘要:
In a solid-state image pickup device including a pixel that includes a photoelectric conversion portion, a carrier holding portion, and a plurality of transistors, the solid-state image pickup device further includes a first insulating film disposed over the photoelectric conversion portion, the carrier holding portion, and the plurality of transistors, a conductor disposed in an opening of the first insulating film and positioned to be connected to a source or a drain of one or more of the plurality of transistors, and a light shielding film disposed in an opening or a recess of the first insulating film and positioned above the carrier holding portion.
摘要:
In a photoelectric conversion apparatus including a plurality of focus detection pixels, each focus detection pixel including a photoelectric conversion element, the photoelectric conversion element having a light receiving surface, and a plurality of wiring layers to read a signal supplied by the photoelectric conversion element, the photoelectric conversion apparatus further includes a light shielding film covering a part of the photoelectric conversion element and having the lower surface positioned closer to a plane, which includes a light receiving surface of the photoelectric conversion element and which is parallel to the light receiving surface, than a lower surface of the lowermost one of the plurality of wiring layers.
摘要:
A photoelectric conversion device manufacturing method comprises: a first implantation step of implanting impurity ions of a first conductivity type into an underlying substrate via a region of the oxide film exposed by an opening, thereby forming a first semiconductor region having a first thickness in the element region; an the oxidation step of oxidizing the region of the oxide film exposed by the opening, thereby thickening the exposed region; an the exposure step of exposing a region of the oxide film which is not exposed by the opening; a the second implantation step of, after the exposure step, implanting the impurity ions of the first conductivity type into the underlying substrate via a region unthickened in the oxidation step, thereby forming a second semiconductor region having a second thickness larger than the first thickness in the element isolation region; and an the element formation step.
摘要:
A printing head is intended to achieve high reliability and a production method of the printing head is intended to achieve high yield at low cost. A liquid ejecting printing head employs a base body, in which an electrothermal transducer element, a driving functional element for driving the electrothermal transducer element, a wiring electrode connecting between the electrothermal transducer element and the driving functional element, and an insulation layer provided on the wiring electrode are formed on a substrate. The electrothermal transducer element has a heat generating resistor formed of a material selected from the group consisting TaN, HfB2, Poly-Si, Ta—Al, Ta—Ir, Au and Ag. A protective layer above the heat generating body is formed of an insulative compound deposited to be low density to high density in order. The protective layer is formed by depositing the insulative material in the electrothermal transducer element or the wiring electrode with elevating the temperature of the base body from low temperature to high temperature.
摘要:
A heat generating resistor comprised of a film composed of a TaN0.8-containing tantalum nitride material which is hardly deteriorated and is hardly varied in terms of the resistance value even upon continuous application of a relatively large quantity of an electric power thereto over a long period of time. A substrate for a liquid jet head comprising a support member and an electrothermal converting body disposed above said support member, said electrothermal converting body including a heat generating resistor layer capable of generating a thermal energy and electrodes being electrically connected to said heat generating resistor layer, said electrodes being capable of supplying an electric signal for demanding to generate said thermal energy to said heat generating resistor layer, characterized in that said heat generating resistor layer comprises a film composed of a TaN0.8-containing tantalum nitride material. A liquid jet head provided with said substrate for a liquid jet head. A liquid jet apparatus provided with said liquid jet head.