Abstract:
An electrically conductive polymer composition contains an electrically conductive polymer obtained by using a polymer in the form of cations composed of repeating structural units of 3,4-ethylene dioxythiophene and polystyrene sulfonic acid as anions and further contains naphthalene sulfonic acid as an additive. A solid electrolytic capacitor 101 or a surface-mount transmission line element 102 has a polypyrrole conductive polymer layer 3 as a first solid electrolyte and a poly(3,4-ethylene dioxythiophene) conductive polymer layer 4 as a second solid electrolyte.
Abstract:
An electrically conductive polymer composition contains an electrically conductive polymer obtained by using a polymer in the form of cations composed of repeating structural units of 3,4-ethylene dioxythiophene and polystyrene sulfonic acid as anions and further contains naphthalene sulfonic acid as an additive. A solid electrolytic capacitor 101 or a surface-mount transmission line element 102 has a polypyrrole conductive polymer layer 3 as a first solid electrolyte and a poly(3,4-ethylene dioxythiophene) conductive polymer layer 4 as a second solid electrolyte.
Abstract:
A method of processing a semiconductor wafer including the steps of executing a permutation processing by using a plurality of processing containers while sequentially transferring the wafers into the containers or performing a parallel processing and a transfer mechanism used commonly for the containers while sequentially transferring the wafers. The wafer processing is performed after the completion of conditioning of the vessel, and a conditioning start time for a next container is adjusted so that the completion of conditioning occurs when processing in the previous container is completed.
Abstract:
A method of processing a semiconductor wafer, characterized by comprising the steps of executing a permutation processing for processing (Pi) the semiconductor wafers by using a plurality of processing containers (A, B, C, D) for performing the processings different from each other while sequentially transferring (Ci) the wafers into the processing containers or performing a parallel processing for processing the wafers in the processing containers by using the plurality of processing containers for performing the processings identical to each other and a transfer mechanism used commonly for the processing containers while sequentially transferring the wafers into the processing containers by the transfer mechanism, wherein the processings of the wafers in the processing vessels are performed after the completion of the conditioning (Si) of the processing vessels and, in a first processing, a conditioning start time for a next processing container is adjusted so that the conditioning of the next processing container can be completed when the processing of the previous processing container is completed and, in a second processing, the conditioning start time for the latter processing container is adjusted so that the conditioning of the processing container allowing the wafers to be next transferred therein can be completed when the transfer of the wafers into the processing container is completed.
Abstract:
A shadow mask assembly is provided, which reduces the necessary tensile force to be applied to the shadow mask and the weight and fabrication cost of the assembly itself. This assembly is comprised of (a) a pair of bars arranged in substantially parallel at a specific distance; the pair of bars being made of metal having a first thermal expansion coefficient; (b) a pair of arms fixed to the pair of bars in such a way that each of the pair of arms links the pair of arms together; the pair of arms applying a force that moves the pair of bars away from each other; the pair of arms being made of metal having a second thermal expansion coefficient; the pair of arms constituting a frame having an approximately rectangular opening along with the pair of bars; and (c) a shadow mask fixed to the pair of the bars so as to cover the opening of the frame; the shadow mask being applied with a tensile force in a direction approximately perpendicular to the pair of bars due to the force of the pair of arms that moves the pair of bars away from each other, thereby keeping the mask in its specific shape; the shadow mask being made of metal having a third thermal expansion coefficient that is low enough for suppressing the doming phenomenon; the third thermal expansion coefficient of the mask being less than the second thermal expansion coefficient of the pair of arms.
Abstract:
A color cathode ray tube apparatus is provided to reduce the amount of deflection power required, this apparatus having a panel part, on the inside surface of which is formed a phosphor film that emits three primary colors, a funnel part that has its expanded aperture joined to the panel part and a funnel-shaped part, a neck part in which is housed an electron gun structure, and which is joined to the reduced-diameter &phgr; a aperture of the funnel part, and a deflection yoke that is disposed between the funnel part and the neck part, the neck part being formed by a main part that houses the electron gun structure and a reduced-diameter part to which are attached the deflection yokes. The funnel part has a quadrangular pyramid shape at the end that is joined to the neck part, and this can also be used for attachment of the deflection yoke.
Abstract:
An electron gun fixer comprising bulb spacers fixed to an electron gun to be inserted into a bulb neck. Each of the bulb spacers has a supporting portion to be put into press contact with the inner surface of the bulb neck. The expression “R1≧R2>R3” holds for the supporting portion, where R1 is the radius of curvature in the cross section along the direction of insertion of the electron gun into the bulb neck, R2 is the curvature of a peripheral part in the cross section perpendicular to the direction of insertion, and R3 is the radius of curvature for the remaining parts in the cross section perpendicular to the direction of insertion. R2 is substantially equal to the radius of curvature R0 of the bulb neck.
Abstract:
The present invention proposes light-weight and easy-to-handled deodorizing material that has a large contact area with bad smell-causing gas as well as better deodorizing performance and also that enjoys a smooth circulation of that gas with a lower permeation resistance. A single-faced corrugated fiberboard made of a cellulose-based substance is allowed to contain ferrous sulfate, which is subsequently oxidized into basic ferric sulfate.
Abstract:
A transparent electroconductive laminate having a transparent electroconductive layer composed mainly of indium oxide deposited on a transparent planar substrate, the electroconductive layer comprises two uniformly mixed phases comprising a crystalline phase of 1-80% by area and an amorphous phase of 99-20% by area and, in particular, the crystalline phase is composed of a grain or grains having a size of less than 1 .mu.m and the crystal grain or grains are in at least one of an isolated state, a linked state and a state in which the crystal grain or grains are separated from each other by a network of the amorphous phase, whereby the laminate is suitable for an electrode of a transparent touch panel and an electroluminescent panel.
Abstract:
There is disclosed a bubble-mode data-rewritable optical disc, which has a transparent substrate and a recording layer, formed on the substrate, for storing data to be optically rewritable. The substrate is at least partially formed of an organic material, which releases a gas component when it is heated at a radiation region of a data recording light beam. The recording layer is deposited on the substrate by co-sputtering or co-vacuum evaporation. The recording layer is made of a specific amorphous material containing silicon and fine metal particles. When the gas component is released from the substrate, the recording layer is deformed to be locally peeled off out of the substrate by pressure of the gas component, thus forming a protuberance. In a data erasing mode, a data erasing light beam is radiated onto the recording layer, which is then deformed so as to cause the protuberance to disappear, and has a substantially flat surface, thereby erasing the stored information.