Abstract:
A method for producing a semiconductor chip is a method for producing a semiconductor chip that includes a substrate, a conductive portion formed on the substrate, and a microbump formed on the conductive portion, which includes a smooth surface formation process of forming a smooth surface on the microbump, and the smooth surface formation process includes a heating process of causing a reducing gas to flow in an inert atmosphere into a space where the semiconductor chips are arranged and heated at or higher than a temperature of a melting point of the microbump, and in the heating process, a pressure application member is mounted on the microbump and among principal surfaces of the pressure application member, a principal surface that contacts the microbump is a flat surface.
Abstract:
A method for producing a semiconductor package is a method for producing a semiconductor package in which a plurality of semiconductor chips, each of which includes a substrate, conductive portions formed on the substrate, and microbumps formed on the conductive portions, are laminated, which includes a heating process of causing a reducing gas to flow in an inert atmosphere into a space where the semiconductor chips are arranged and heated at or higher than a temperature of a melting point of the microbump, and in the heating process, a pressure application member is mounted on the microbump.
Abstract:
A magnetic head device with high joint strength in an arm and a suspension is provided. The magnetic head device comprises an arm, a suspension overlapping with a leading end part of the arm, a slider located at a leading end part of the suspension, and a joint part that is located between the leading end part of the arm and the suspension and that joins the arm and the suspension, while the joint part includes Sn.
Abstract:
A magnetic head device which has strong joint strength in an arm and a suspension and high accuracy of a size and a shape is provided. The magnetic head device comprises an arm, a suspension overlapping with a leading end part of the arm, a slider located at a leading end part of the suspension, and a first joint part that is placed between the leading end part of the arm and the suspension and that joins the arm and the suspension, the first joint part including Sn or a resin adhesive.
Abstract:
A preferred terminal structure comprises a base material; an electrode formed on the base material; an insulating covering layer formed on the base material and on the electrode and having an opening exposing at least part of the electrode; an under bump metal layer containing Ni, filling the opening on the electrode; and a dome-shaped bump containing Sn and Ti, covering the under bump metal layer, wherein at least part of the under bump metal layer has a portion sandwiched between the external electrode and the insulating covering layer.
Abstract:
This structure body includes a conductor comprising Cu as a main component, an intermediate layer formed on the conductor, and a protective layer formed on the intermediate layer, the intermediate layer includes at least Cu, Sn, Ni, and P, and the protective layer includes at least Ni and P.