Abstract:
Systems and methods are provided for enhancing edge breathers for composite manufacturing. One exemplary embodiment is an apparatus that includes an edge breather to facilitate manufacturing of a composite part. The edge breather includes a body, ridges disposed along a length of the body that each define an arc which is perpendicular to a lengthwise axis of the body, and openings disposed along the body that enable air to enter a hollow interior that runs along the length of the body. The arcs defined by the ridges resist compressive loads applied to the edge breather and prevent the hollow interior from collapsing under pressure applied to the edge breather by a vacuum bag during manufacturing of the composite part.
Abstract:
A workpiece heating system includes an outer shell configured to receive a mandrel having a mandrel partside configured to support a workpiece. A gas displacement device is configured to discharge a gas toward a mandrel backside. At least one heat exchanger is configured to heat the gas prior to the gas entering the gas displacement device. A hood system is configured to at least partially envelope the mandrel when positioned within the outer shell. A hood first wall and the mandrel backside define a first annular gap configured to receive the gas discharged from the gas displacement device, and direct the gas axial from the mandrel proximal end to the mandrel distal end. A hood second wall and the mandrel partside define a second annular gap configured to receive the gas from the first annular gap and direct the gas axial from the mandrel distal end to the mandrel proximal end.
Abstract:
A workpiece heating system includes an outer shell configured to receive a mandrel having a mandrel partside configured to support a workpiece. A gas displacement device is configured to discharge a gas toward a mandrel backside. At least one heat exchanger is configured to heat the gas prior to the gas entering the gas displacement device. A hood system is configured to at least partially envelope the mandrel when positioned within the outer shell. A hood first wall and the mandrel backside define a first annular gap configured to receive the gas discharged from the gas displacement device, and direct the gas axial from the mandrel proximal end to the mandrel distal end. A hood second wall and the mandrel partside define a second annular gap configured to receive the gas from the first annular gap and direct the gas axial from the mandrel distal end to the mandrel proximal end.
Abstract:
A method of fabricating a composite assembly may include providing a first laminate and a second laminate respectively formed of first and second composite plies, and having a respective first and second cured section and a respective first and second uncured section. The method may further include interleaving the first composite plies in the first uncured section with the second composite plies in the second uncured section to form an interfacial region. The method may additionally include curing the interfacial region to join the first laminate to the second laminate and form a unitized composite assembly.
Abstract:
Systems and methods are provided for enhancing edge breathers for composite manufacturing. One exemplary embodiment is an apparatus that includes an edge breather to facilitate manufacturing of a composite part. The edge breather includes a body, ridges disposed along a length of the body that each define an arc which is perpendicular to a lengthwise axis of the body, and openings disposed along the body that enable air to enter a hollow interior that runs along the length of the body. The arcs defined by the ridges resist compressive loads applied to the edge breather and prevent the hollow interior from collapsing under pressure applied to the edge breather by a vacuum bag during manufacturing of the composite part.
Abstract:
A method of fabricating a composite assembly may include providing a first laminate and a second laminate respectively formed of first and second composite plies, and having a respective first and second cured section and a respective first and second uncured section. The method may further include interleaving the first composite plies in the first uncured section with the second composite plies in the second uncured section to form an interfacial region. The method may additionally include curing the interfacial region to join the first laminate to the second laminate and form a unitized composite assembly.
Abstract:
A composite structure is fabricated by staging at least a portion of an uncured, first composite component. The first composite component is assembled with a second composite component, and the staged portion of the first composite component is cocured with the second composite component.
Abstract:
A temperature emulator may include a stack assembly having a pair of end plates positioned at an uppermost and lowermost location of the stack assembly, a plurality of heat sink plates disposed between the pair of end plates, each of the heat sink plates having a plurality of heat sink cutouts, a plurality of shim plates separating adjacent pairs of the end plates and the heat sink plates, each of the shim plates having a shim cutout, an open cavity formed by a plurality of adjacent heat sink cutouts and shim cutouts, thermal insulation disposed within the cavity, and at least one temperature sensor coupled to at least one of the plurality of heat sink plates.