Abstract:
Disclosed are bio-based polyester fibers, particularly a PET fibers, and a method of making the same by: contacting a bio-based MEG composition with a diacid composition to form a polyester composition; and spinning and/or drawing the resulting polyester composition into a fiber; wherein the bio-based MEG composition comprises: a) monoethylene glycol (MEG); and b) from about 1 ppm to about 5000 ppm of at least one C3-C12 1,2-diol, wherein the C3-C12 1, 2-diol is linear, branched, or cyclic.
Abstract:
This disclosure provide new multilayer polyester (particularly PET) containers that have improved gas barrier properties over conventional monolayer PET containers. In particular, a 2,5-furandicarboxylate polyester (for example, poly(ethylene furan-2,5-dicarboxylate) (PEF)) barrier layer that has superior gas barrier and mechanical properties relative to PET, that is “sandwiched” between two PET layers, has been found to achieve a significantly higher barrier against gas permeation relative to conventional monolayer PET container of the same size and shape. Associated preforms, methods, and compositions are disclosed.
Abstract:
This disclosure provides an investigation of the kinetic uptake properties of water in amorphous PEF and PET across the entire water activity interval at various temperatures, and also investigates the corresponding equilibrium uptake properties at the same conditions. Uptake data were measured using three independent and complementary methodologies, and excellent agreement was observed among all three methodologies. Accordingly, this disclosure provides for methods of plasticizing poly(ethylene furanoate) film by cold water sorption, and provides a plasticized poly(ethylene furanoate) (PEF) film made according to the disclosed methods. Methods for making thin films of PEF are also provided.
Abstract:
This disclosure provides economical and effective methods and apparatus for repairing scratches and scuffs on refillable bottle surfaces that minimally contaminates the bottle during the refurbishing process. In one aspect, the method comprises the steps of: a) adding at least one fluid into the polymeric packaging material such as a bottle to form at least a partially filled packaging material; and b) applying at least one heat source to an exterior surface of the at least partially filled packaging material to form a repaired polymeric packaging material. Apparatus and recycling systems that incorporate this method are also disclosed.