Microchip-Yb fiber hybrid optical amplifier for micro-machining and marking
    21.
    发明申请
    Microchip-Yb fiber hybrid optical amplifier for micro-machining and marking 有权
    用于微加工和标记的Microchip-Yb光纤混合光放大器

    公开(公告)号:US20060132904A1

    公开(公告)日:2006-06-22

    申请号:US11339679

    申请日:2006-01-26

    IPC分类号: H01S3/00

    摘要: The invention describes techniques for the control of the spatial as well as spectral beam quality of multi-mode fiber amplification of high peak power pulses as well as using such a configuration to replace the present diode-pumped, Neodynium based sources. Perfect spatial beam-quality can be ensured by exciting the fundamental mode in the multi-mode fibers with appropriate mode-matching optics and techniques. The loss of spatial beam-quality in the multi-mode fibers along the fiber length can be minimized by using multi-mode fibers with large cladding diameters. Near diffraction-limited coherent multi-mode amplifiers can be conveniently cladding pumped, allowing for the generation of high average power. Moreover, the polarization state in the multi-mode fiber amplifiers can be preserved by implementing multi-mode fibers with stress producing regions or elliptical fiber cores These lasers find application as a general replacement of Nd: based lasers, especially Nd:YAG lasers. Particularly utility is disclosed for applications in the marking, micro-machining and drilling areas.

    摘要翻译: 本发明描述了用于控制高峰值功率脉冲的多模光纤放大的空间以及光束质量的技术,以及使用这种配置来替代当前二极管泵浦的基于钕的源。 通过适当的模式匹配光学和技术,可以通过激发多模光纤中的基模来确保完美的空间光束质量。 通过使用具有大包层直径的多模光纤,能够使沿着光纤长度的多模光纤中的空间光束质量损失最小化。 近衍射极限相干多模放大器可以方便地进行包层泵浦,从而产生高平均功率。 此外,通过实施具有应力产生区域或椭圆形光纤核心的多模光纤,可以保持多模光纤放大器中的偏振状态。这些激光器可用作Nd基激光器,尤其是Nd:YAG激光器的一般替代。 公开了用于标记,微加工和钻孔领域的应用。

    Single-polarization high power fiber lasers and amplifiers

    公开(公告)号:US20050232313A1

    公开(公告)日:2005-10-20

    申请号:US11109711

    申请日:2005-04-20

    摘要: A novel polarization maintaining optical fiber, which can be used as a high-power polarization maintaining fiber laser or amplifier, is described. Insensitivity of the polarization state to external fiber bending and temperature changes is accomplished by minimizing polarization mode-coupling via reducing stresses inside the fiber core via increasing the fiber diameter. Alternatively, polarization mode-coupling can be minimized by an optimization of the fiber coating to minimize stresses at the interface between the fiber and the coating. As a result insensitivity to polarization mode-coupling is obtained at greatly reduced values of birefringence compared to small-diameter fibers. The fiber is of significant use in any application where polarization stability is important, and will be useful in telecommunications applications in particular for reducing polarization mode dispersion. An implementation in a parabolic pulse-producing fiber laser is also described as one specific high power example.

    Mode-locked multi-mode fiber laser pulse source

    公开(公告)号:US20050008044A1

    公开(公告)日:2005-01-13

    申请号:US10850509

    申请日:2004-05-20

    IPC分类号: H01S3/06 H01S3/067 H01S3/098

    摘要: A laser utilizes a cavity design which allows the stable generation of high peak power pulses from mode-locked multi-mode fiber lasers, greatly extending the peak power limits of conventional mode-locked single-mode fiber lasers. Mode-locking may be induced by insertion of a saturable absorber into the cavity and by inserting one or more mode-filters to ensure the oscillation of the fundamental mode in the multi-mode fiber. The probability of damage of the absorber may be minimized by the insertion of an additional semiconductor optical power limiter into the cavity. To amplify and compress optical pulses in a multi-mode (MM) optical fiber, a single-mode is launched into the MM fiber by matching the modal profile of the fundamental mode of the MM fiber with a diffraction-limited optical mode at the launch end, The fundamental mode is preserved in the MM fiber by minimizing mode-coupling by using relatively short lengths of step-index MM fibers with a few hundred modes and by minimizing fiber perturbations. Doping is confined to the center of the fiber core to preferentially amplify the fundamental mode, to reduce amplified spontaneous emission and to allow gain-guiding of the fundamental mode. Gain-guiding allows for the design of systems with length-dependent and power-dependent diameters of the fundamental mode. To allow pumping with high-power laser diodes, a double-clad amplifier structure is employed. For applications in nonlinear pulse-compression, self phase modulation and dispersion in the optical fibers can be exploited. High-power optical pulses may be linearly compressed using bulk optics dispersive delay lines or by chirped fiber Bragg gratings written directly into the SM or MM optical fiber. High-power cw lasers operating in a single near-diffraction-limited mode may be constructed from MM fibers by incorporating effective mode-filters into the laser cavity. Regenerative fiber amplifiers may be constructed from MM fibers by careful control of the recirculating mode. Higher-power Q-switched fiber lasers may be constructed by exploiting the large energy stored in MM fiber amplifiers.

    Focusless micromachining
    24.
    发明申请
    Focusless micromachining 审中-公开
    无焦点微加工

    公开(公告)号:US20050000952A1

    公开(公告)日:2005-01-06

    申请号:US10848746

    申请日:2004-05-19

    申请人: Donald Harter

    发明人: Donald Harter

    IPC分类号: B23K26/06 B23K26/36

    CPC分类号: B23K26/0624 B23K26/361

    摘要: A system for ablating solid material, which comprises of a laser generating ultra short pulses. The pulses are generated in a medium which conducts the ultra short pulses toward the solid material. The ultra short pulses self focus in the medium to a power sufficient to ablate said solid material.

    摘要翻译: 一种用于烧蚀固体材料的系统,其包括产生超短脉冲的激光。 脉冲在向固体材料传导超短脉冲的介质中产生。 超短脉冲在介质中自我聚焦成足以消融所述固体材料的功率。

    Microchip - Yb fiber hybrid optical amplifier for micro-machining and marking
    26.
    发明申请
    Microchip - Yb fiber hybrid optical amplifier for micro-machining and marking 有权
    Microchip - Yb光纤混合光放大器用于微加工和标记

    公开(公告)号:US20070109629A1

    公开(公告)日:2007-05-17

    申请号:US11643760

    申请日:2006-12-22

    IPC分类号: H01S3/00

    摘要: The invention describes techniques for the control of the spatial as well as spectral beam quality of multi-mode fiber amplification of high peak power pulses as well as using such a configuration to replace the present diode-pumped, Neodynium based sources. Perfect spatial beam-quality can be ensured by exciting the fundamental mode in the multi-mode fibers with appropriate mode-matching optics and techniques. The loss of spatial beam-quality in the multi-mode fibers along the fiber length can be minimized by using multi-mode fibers with large cladding diameters. Near diffraction-limited coherent multi-mode amplifiers can be conveniently cladding pumped, allowing for the generation of high average power. Moreover, the polarization state in the multi-mode fiber amplifiers can be preserved by implementing multi-mode fibers with stress producing regions or elliptical fiber cores These lasers find application as a general replacement of Nd: based lasers, especially Nd:YAG lasers. Particularly utility is disclosed for applications in the marking, micro-machining and drilling areas.

    摘要翻译: 本发明描述了用于控制高峰值功率脉冲的多模光纤放大的空间以及光束质量的技术,以及使用这种配置来替代当前二极管泵浦的基于钕的源。 通过适当的模式匹配光学和技术,可以通过激发多模光纤中的基模来确保完美的空间光束质量。 通过使用具有大包层直径的多模光纤,能够使沿着光纤长度的多模光纤中的空间光束质量损失最小化。 近衍射极限相干多模放大器可以方便地进行包层泵浦,从而产生高平均功率。 此外,通过实施具有应力产生区域或椭圆形光纤核心的多模光纤,可以保持多模光纤放大器中的偏振状态。这些激光器可用作Nd基激光器,尤其是Nd:YAG激光器的一般替代。 公开了用于标记,微加工和钻孔领域的应用。