Abstract:
An ultrasound detect circuit includes a decimator that decimates a transmit signal to be transmitted through an ultrasonic transducer. The transmit signal is decimated to generate first and second template signals. The decimator uses a different decimation ratio to generate the first template signal than the second template signal. The circuit also includes a first correlator to correlate a signal derived from the ultrasonic transducer with the first template signal, aa second correlator to correlate the signal derived from the ultrasonic transducer with the second template signal, and a Doppler shift determination circuit to determine a Doppler frequency shift based on an output from the first correlator and an output from the second correlator.
Abstract:
Ultrasonic sensing systems and associated methods provide side-lobe reduction to improve the acoustic detection of small objects, the signature envelope peaks of which can otherwise be obscured by subsidiary envelope peaks in side lobes that result from residual correlation between a signal received by an ultrasonic transducer and a template signal corresponding to a burst signal emitted by the ultrasonic transducer. A shaping signal by which the amplitude of the burst signal can be varied with respect to time is taken into account in the template signal, and correlator circuitry correlates a signal derived from the ultrasonic transducer with the template signal to produce a correlated output exhibiting the desired side-lobe reduction. The distance from the transducer to the detected object can thereby be determined with enhanced accuracy and responsiveness.
Abstract:
A first branch group circuit includes a first branch circuit receiving a first RF input signal and first control information; and a second branch circuit receiving the first input signal and second control information. Each of the first and second branch circuits includes a power amplifier. The second control information enables the second branch circuit to be switched on or off while the first branch circuit remains on. A second branch group circuit includes: a third branch circuit receiving a second RF input signal and third control information; and a fourth branch circuit receiving the second input signal and fourth control information. Each of the third and fourth branch circuits includes a power amplifier. The fourth control information enables the fourth branch circuit to be switched on or off while the third branch circuit remains on. A combiner combines output signals of the power amplifiers to produce an output signal.
Abstract:
An ultrasonic detection circuit includes a transmitter circuit that provides excitation signals to a terminal of an ultrasonic transducer to drive the ultrasonic transducer during an excitation interval. The excitation signals provided during the excitation interval include a first excitation signal at a first resonant frequency of the ultrasonic transducer followed by a second excitation signal at a second resonant frequency of the ultrasonic transducer. The first resonant frequency is different from the second resonant frequency.
Abstract:
Embodiments of the invention provide a DPD system where the transmit reference signal is transformed, including sub-sampling, frequency translation, and the like, to match the feedback signal, which goes thru a similar transformation process, to obtain an error signal. The same transformation is applied to a system model, which may be Jacobian, Hessian, Gradient, or the like, in an adaptation algorithm to minimize error.
Abstract:
An outphasing amplifier includes a first class-E power amplifier (16-1) having an output coupled to a first conductor (31-1) and an input receiving a first RF drive signal (S1(t)). A first reactive element (CA-1) is coupled between the first conductor and a second conductor (30-1). A second reactive element (LA-1) is coupled between the second conductor and a third conductor (32-1). A second class-E power amplifier (17-1) includes an output coupled to a fourth conductor (31-2) and an input coupled to a second RF drive signal (S2(t)), a third reactive element (CA-3) coupled between the second and fourth conductors. Outputs of the first and second power amplifiers are combined by the first, second and third reactive elements to produce an output current in a load (R). An efficiency enhancement circuit (LEEC-1) is coupled between the first and fourth conductors to improve power efficiency at back-off power levels. Power enhancement circuits (20-1,2) are coupled to the first and fourth conductors, respectively.
Abstract:
A method includes receiving an input signal and predistorting a baseband representation of the input signal at a carrier frequency and at one or more harmonic frequencies. The method also includes generating an output signal based on the predistorted baseband representation of the input signal, and transmitting the output signal to a power amplifier. Predistorting the baseband representation of the input signal at the carrier frequency could occur in parallel with predistorting the baseband representation of the input signal at the one or more harmonic frequencies.
Abstract:
At least one tone is generated. An output signal is generated in response to an input signal and the at least one tone. The output signal is modulated. The input signal and the at least one tone are represented in the modulated output signal. The at least one tone is outside a bandwidth of the input signal as represented in the modulated output signal. The modulated output signal is amplified. The at least one tone in the amplified signal is attenuated after the amplifying.
Abstract:
A method of canceling nonlinear distortions in pulse width modulated signals includes receiving an input signal. A first signal that is the modulated input signal is generated. The first signal has quantized levels representing the input signal. A pulse width modulated (PWM) sequence that is representative of the first signal is generated. A second signal that is the PWM sequence mixed with a carrier signal is generated. An error signal is generated in response to the first signal and modeled from the second signal. The error signal is added to the input signal.
Abstract:
In an ultrasonic detection system that uses frequency-modulation or phase-modulation coding to distinguish emitted bursts from multiple transducers, a receiver associated with a transducer uses peak search, peak buffer, and peak rank stages in one or more receiver signal processing paths to identify valid received ultrasonic signal envelope peaks in correlator outputs. The peak rank stage can support different modes respectively designed to handle one code, two or more codes, or two or more codes with support for Doppler frequency shift detection. Valid peak information (e.g., amplitude and time) can be reported to a central controller and/or stored locally in a fusion stage to generate more intelligent information for targets or obstacles using peaks from multiple bursts.