Abstract:
Forming metal gate transistors that have different work functions is disclosed. In one example, a first metal, which is a ‘mid gap’ metal, is manipulated in first and second regions by second and third metals, respectively, to move the work function of the first metal in opposite directions in the different regions. The resulting work functions in the different regions correspond to that of different types of the transistors that are to be formed.
Abstract:
The present invention facilitates semiconductor fabrication by providing methods of fabrication that selectively form high-k dielectric layers within NMOS regions. An I/O dielectric layer is formed in core and I/O regions of a semiconductor device (506). The I/O dielectric layer is removed (508) from the core region of the device. A core dielectric layer is formed in the core region (510). A barrier layer is deposited and patterned to expose the NMOS devices of the core region (512). The core dielectric layer is removed from the core NMOS devices (514). A high-k dielectric layer is formed (514) over the core and I/O regions. Then, the high-k dielectric layer is removed (512) from PMOS regions/devices of the core region and the NMOS and PMOS regions/devices of the I/O region.
Abstract:
The present invention provides a method of forming a dual work function metal gate microelectronics device 200. In one aspect, the method includes forming nMOS and pMOS stacked gate structures 315a and 315b. The nMOS and pMOS stacked gate structures 315a and 315b each comprise a gate dielectric 205, a first metal layer, 305 located over the gate dielectric 205 and a sacrificial gate layer 310 located over the first metal layer 305. The method further includes removing the sacrificial gate layer 310 in at least one of the nMOS or pMOS stacked gate structures, thereby forming a gate opening 825 and modifying the first metal layer 305 within the gate opening 825 to form a gate electrode with a desired work function.
Abstract:
The present invention provides a system for producing a triple-gate transistor segment (300), utilizing a standard semiconductor substrate (302). The substrate has a plurality of isolation regions (304) formed along its upper surface in a distally separate relationship, defining a channel region (306). A form structure (308) is disposed atop the isolation regions, and defines a channel body area (310) over the channel region. A channel body structure (316) is disposed within the channel body area, and is engineered to provide a blunted corner or edge (318) along a perimeter of its upper exposed surface. The form structure is then removed, and subsequent processing is performed.
Abstract:
The present invention pertains to annealing a high dielectric constant (high-k) material in a manner that substantially reduces or eliminates disadvantages and problems heretofore associated with the same. In particular, the high-k material is annealed in an ambient having a single chemistry of nitrogen and hydrogen, such as ammonia (NH3), to nitride and react unwanted impurities, and an oxidizer to oxidize and densify the high-k material, while mitigating growth of a lower-k material at an interface of the high-k material and an underlying substrate. Additionally, particular temperatures and pressures are utilized within the process so that the risk of an undesired exothermic reaction is mitigated. Annealing the high-k material in accordance with manners disclosed herein has application to semiconductor fabrication processes and, as such, is discussed herein within the context of the same.
Abstract:
The present invention provides, in one embodiment, a method (100) of forming dual work function metal gate electrodes in a semiconductor device. The method includes forming a gate dielectric (105) over a substrate (110) and depositing a mold layer (115) having a first opening (120) therein over the gate dielectric (105). The method further includes creating a first metal gate electrode (125) by depositing a first metal in the first opening (120). Other embodiments include an active device (200) produced by the above-described method and method of manufacturing an integrated circuit (300) using the above-described method.
Abstract:
The instant invention concerns Francisella bacteria mediated degradation of alkaline phosphatase (AP). Detection of AP degradation may be used to determine the presence of Francisella bacteria in a sample. Furthermore, methods for identifying and treating Francisella infections by detecting AP degradation are described. Methods of the invention also concerns methods for treating Francisella infection by inhibiting AP degradation.
Abstract:
The present invention provides method of forming a gate dielectric that includes forming a metal source layer (210) comprising a metal and at least one nonmetallic element over a substrate (110). The metal source layer (210) is formed having a composition rich in the metal. A dielectric layer (310) comprising the metal is formed over the metal source layer (210).
Abstract:
Concurrently forming different metal gate transistors having respective work functions is disclosed. In one example, a metal carbide, which has a relatively low work function, is formed over a semiconductor substrate. Oxygen and/or nitrogen are then added to the metal carbide in a second region to establish a second work function in the second region, where the metal carbide itself establishes a first work function in a first region. One or more first metal gate transistor types are then formed in the first region and one or more second metal gate transistor types are formed in the second region.
Abstract:
The present invention provides, in one embodiment, a gate structure (100). The gate structure comprises a gate dielectric (105) and a gate (110). The gate dielectric includes a refractory metal and is located over a semiconductor substrate (115). The semiconductor substrate has a conduction band and a valence band. The gate is located over the gate dielectric and includes the refractory metal. The gate has a work function aligned toward the conduction band or the valence band. Other embodiments include an alternative gate structure (200), a method of forming a gate structure (300) for a semiconductor device (301) and a dual gate integrated circuit (400).