Abstract:
Battery module (1), comprising an electric cell (6), a module housing (2) which receives the electric cell (6), two or more, in particular four or six contacting units (4) which are attached to the module housing (2), wherein each of the contacting units (4) has at least two connections (5).
Abstract:
The invention relates to a method for operating a vehicle which comprises an electric travel drive and at least one rechargeable and replaceable electric power unit, the electric travel drive being supplied with electric drive energy by the electric power unit and the electric power unit being recharged or replaced when its charge status is low.
Abstract:
To supply energy to motorised vehicles, a heat engine (SM) is provided to convert heat (106, 107, 108, 114) that accumulates in the vehicle at least partly into kinetic energy of the vehicle and to feed other portions of said lost heat to a heat accumulator (LWS). An optional, mechanical energy accumulator (MES) can take up kinetic energy from a vehicle motor (MGH), store said energy and deliver said energy back to a vehicle motor (MGM when required.
Abstract:
An energy storage unit, such as a galvanic cell, is composed of a first electrode (10), a second electrode (18) and a separation element (24), which is arranged between the first and the second electrode. Therein, the first and the second electrode (10, 18), respectively, comprise an electrode collector (12, 20) and an active electrode material (14, 22), which is applied onto the respective electrode collector on one side or on both sides. In order to improve the longterm stability, in particular for large format lithium-ion cells, the electrode collector (12, 20) of the first and/or the second electrode (10, 18) is made of a copper material, which is technical-grade oxygen-free having at least approximately 99.9% by weight copper and a specific phosphorous content.
Abstract:
The present invention relates to a device for the controlled transfer of electric mechanisms operating according to galvanic principles from a first operating state into at least a second operating state, in which the functionality and in particular the reaction potential of the electric mechanism operating according to galvanic principles is reduced or completely eliminated.
Abstract:
The invention relates to an energy storage device, comprising a plurality of storage cells and a temperature-control device for the temperature-control of the storage cells or of a cell assembly formed by the storage cells, wherein elastic means for the shock-absorbing mounting or spacing are provided between a storage cell and another component, wherein the other component is another storage cell, a retaining element, another housing part or a heat-conducting element. The elastic means are designed and configured as a functional component of the temperature-control device. The invention also relates to storage cells and heat-conducting elements which are suitable for use in the energy storage device according to the invention.
Abstract:
The invention relates to a method for handling and servicing an electrochemical cell (1), preferably a battery having a number of electrochemical cells (1), comprising a controller (3), in particular a cell controller, preferably a battery controller, at least one sensor (4) connected to the controller (3) for acquiring parameter data (DPar.) of the electrochemical cell (1) or the battery, a storage device (5), which comprises preferably a non-volatile memory, in particular a flash memory, and a unit (2) for data transmission, said method comprising the following steps: (S1) acquiring parameter data (DPar.) of the electrochemical cell (1) or the battery, (S2) feeding the acquired parameter data (DPar.) to the controller (3), (S3) calculating the control data (DStr.) as a function of the supplied parameter data (DPar.) with the controller (3), (S4) feeding the control data (DStr.) to the storage device (5), (S5) reading out the control data (DStr.) of the storage device (5) to the unit (2) for data transmission, and (S6) transmitting the read-out control data (DStr.) to a display device via the unit (2) for data transmission, in particular transmitting the read-out control data (DStr.) wirelessly to the display device via the unit (2) for data transmission.
Abstract:
The invention relates to a battery (1) comprising: at least one electrochemical energy accumulator device (2, 2a, 2b, 2c) for supplying electrical energy; a control device (3) for monitoring the exchange of energy with the electrochemical energy accumulator device (2, 2a, 2b, 2c); a measuring device (4, 4a, 4b) for recording, at least at times, at least one physical and/or chemical parameter of the electrochemical energy accumulator device (2, 2a, 2b, 2c) and providing an associated measuring value; and a data storage device (5) for recording, at least at times, a value, especially a measuring value
Abstract:
The invention relates to a battery consisting of a plurality of electrochemical energy stores, a respective separator being positioned between said electrochemical energy stores and being designed in such a way that if specified preconditions are present or occur, a fire-retardant material or an extinguishing agent can be released from said separator.
Abstract:
The invention relates to an electrical component having a device for isolating an electrical line connection, wherein said electrical component comprises a reactive multi-layer structure in order to effect isolation of the electrical line connection. The electrical component can be a galvanic cell, and the device for isolating can be disposed outside or inside the cell. The electrical component can also be a cell connector. A quick and reliable isolation of galvanic cells from a combination of several galvanic cells or a quick and reliable dismantling of large cells into segments can be achieved.