Abstract:
In an electrochemical energy store device, the electrochemically active components (11, 13, 21, 23, 31, 33), or additional components (12, 22, 32), are designed and/or arranged in a hermetically sealed container such that they inhibit the process of a chemical reaction of the electrochemically active components of the energy store device as soon as positive pressure builds, or could build, inside the container as a result of said chemical reaction. Preferably, the flow (14, 34, 35) of a movable component into the area of a chemical reaction, in which said movable component participates as a reactant, is inhibited or suppressed, at least locally, as soon as positive pressure build, or could build, inside the container as a result of said chemical reaction.
Abstract:
The invention relates to a secondary battery, in particular a lithium-ion secondary battery, which has a rapid charging capability. The secondary battery has at least one electrochemical cell and an electrical charge control system, wherein the electrochemical cell has at least two electrodes and at least one separator, wherein the charge control system is designed to monitor the process of charging the secondary battery such that, at least at times, it allows a relative charging current with a charging current value which, in particular, is at least 1 C, and wherein the separator has a coating which is composed of an ion-conducting material which has at least one inorganic component. The invention furthermore relates, in particular, to a lithium-ion secondary battery, to a charge control system for a secondary battery, to an electrochemical cell for a secondary battery, to an arrangement comprising at least one electrode and a separator for an electrochemical cell such as this, and to a method for carrying out a rapid charging process of a secondary battery.
Abstract:
The invention relates to a battery (1) comprising at least one, in particular several battery cells (2), especially square battery cells. The battery cells (2) are accommodated in a battery housing (5) and at least one heat exchanger unit (3) is located inside the battery housing.
Abstract:
The invention relates to an electrochemical cell, comprising a negative electrode comprising a lithium titanate; a positive electrode; and a separator separating the negative from the positive electrode. The cell can be preferably used for driving a vehicle having an electric motor, preferably having a hybrid drive system.
Abstract:
An accumulator comprises at least one galvanic cell and a receiving device for supporting the galvanic cell(s) of the accumulator. The receiving device comprises at least one protecting wall for receiving energy by means of elastic and/or plastic deformation. The protecting wall encases the at least one galvanic cell at least partially and has a thickness which is at least partially less than about 1/10 of the characteristic edge length of the at least one galvanic cell.
Abstract:
A wind power plant, in particular for use on or in a water system, includes a wind wheel, a generator, which can be brought into driving engagement with the wind wheel, and a battery device including at least one electrochemical cell.
Abstract:
A structural part for a vehicle, e.g. a fender, floor, trunk lid, engine compartment cover, door, or roof of the vehicle, comprises a composite structure, in particular one that has a hollow cell structure such as a honeycomb structure or foam structure, said composite structure forming at least one cavity, each of which holds at least one or a plurality of electric energy cells, thus allowing batteries or the like to be accommodated in a vehicle in a compact manner and evenly distributed across the structure.
Abstract:
An electrode stack according to the invention comprises at least a cathode, an anode, and a separator with electrolyte. The cathode, the anode, and the separator are each plate-shaped, respectively. The surface area of the separator is at least as large, as the surface area of the cathode and/or of the anode. The plate-shaped elements of the electrode stack are at least partially connected with each other, by fixation means.
Abstract:
The present invention relates to a battery system, in particular for a motor vehicle, comprising at least one battery. To improve the electrical efficiency it is disclosed, that at least one absorption cooling device is included, which provides a useable controlled cooling for the cooling of at least one battery.
Abstract:
Battery module (1), comprising an electric cell (6), a module housing (2) which receives the electric cell (6), two or more, in particular four or six contacting units (4) which are attached to the module housing (2), wherein each of the contacting units (4) has at least two connections (5).