Abstract:
A hydrophilic ceramic coating is formed on an endoprosthesis preform. The hydrophilic ceramic coating is porous and can store nano-sized drug particles.
Abstract:
In accordance with one aspect, the invention provides a drug delivery device for delivery of a drug to the body. The device is provided with at least one layer that comprises drug-containing particles.
Abstract:
According to an aspect of the invention, medical devices are provided that comprise a substrate, at least one therapeutic agent disposed over or in the substrate, and at least one inorganic layer disposed over the therapeutic agent and the substrate, wherein the inorganic layer is either a porous inorganic layer or is a non-porous layer that becomes a porous inorganic layer in vivo. Other aspects of the invention comprise methods for forming medical devices.
Abstract:
An endoprosthesis such as a coronary stent includes a polymeric reservoir of drug and an over coating formed of ceramic or metal for controlling elution of drag from the reservoir.
Abstract:
A stent is adapted to be implanted in a duct of a human body to maintain an open lumen at the implant site, and to allow viewing body tissue and fluids by magnetic resonance imaging (MRI) energy applied external to the body. The stent constitutes a metal scaffold. An electrical circuit resonant at the resonance frequency of the MRI energy is fabricated integral with the scaffold structure of the stent to promote viewing body properties within the lumen of the stent.
Abstract:
A stent is adapted to be implanted in a duct of a human body to maintain an open lumen at the implant site, and to allow viewing body tissue and fluids by magnetic resonance imaging (MRI) energy applied external to the body. The stent constitutes a metal scaffold. An electrical circuit resonant at the resonance frequency of the MRI energy is fabricated integral with the scaffold structure of the stent to promote viewing body properties within the lumen of the stent.
Abstract:
In various aspects, the present invention relates to implantable or insertable medical devices which release therapeutic agent into the body of a patient.
Abstract:
The embodiments herein relate to an electrode having a porous coating including a fiber mesh, a multi-layer coating, and an outer coating, and a method of making the same. The various electrode coating embodiments include pores in the coating that prevent access by protein or cells while allowing for ion and/or liquid access.
Abstract:
The embodiments herein relate to a coated electrode including a structured surface and a conductive layer and a method of making the same. The various electrode embodiments can include a surface topography that minimizes tissue attachment and thus facilitates removal of the electrode.