Abstract:
The present invention is directed to implantable medical devices which may be used for controllably releasing a therapeutic agent within a patient and methods for making the same. These medical devices may include porous coatings, which may be polymer-free, located on an outer surface or abluminal surface of the medical device. The medical device may be a stent. The pores of the porous coating may be expandable to facilitate loading of the therapeutic agent. The medical device may be triggerable upon implantation of the medical device such that the volume of the voids shrinks to eject the therapeutic agent. The voids may be slots in the stent. Expandable materials or structures may be positioned in the voids to expand upon implantation and eject the therapeutic agent.
Abstract:
Drug-loaded medical devices such as stents and methods for manufacturing them are provided. In certain embodiments, the therapeutic agent is loaded only in or on areas of the medical device that do not undergo substantial deformation during expansion. The medical device may be provided with reservoirs in or on the first portions of the medical device that do not undergo substantial deformation during expansion, and the therapeutic agent may be loaded in these reservoirs. The reservoirs may be covered with a porous coating which may be a non-polymeric coating. In other embodiments, a non-polymeric coating is provided in a discontinuous manner in or on the medical device. A method includes the steps of providing a transfer member that includes a translucent substrate and a layer of transfer material such as a film or foil; attaching reservoirs to the transfer material; positioning the transfer member with the reservoirs adjacent a medical device, such as a stent, with the reservoirs facing the medical device; and directing a laser beam at the transfer member such that the laser beam passes through the translucent substrate to vaporize a portion of the transfer material, creating a pocket of trapped gas between the translucent substrate and reservoir, thereby forcing the reservoir from the transfer member to the medical device. The reservoirs may be formed of a non-polymeric material.
Abstract:
In methods and systems for applying a coating to a medical device, such as a coating comprising a therapeutic agent, electrons may be transferred from an electrode to ionize a therapeutic agent dissolved in an electrolytic solution. The ionized therapeutic agent may then be electrochemically delivered to the medical device. The medical device may be a stent, which may have a porous surface.
Abstract:
Described herein are implantable medical devices comprising a biocompatible polymer comprising a triggerable bioadhesive property that allows the device to adhere to body tissue. The triggerable bioadhesive property of the polymer can be triggered or activated by exposure to a stimulus. Also, the present invention pertains to methods of making an implantable medical device comprising a biocompatible polymer comprising a triggerable bioadhesive property that allows the device to adhere to body tissue.
Abstract:
An endoprosthesis such as a coronary stent includes a polymeric reservoir of drug and an over coating formed of ceramic or metal for controlling elution of drag from the reservoir.
Abstract:
An endoprosthesis such as a coronary stent includes a luminal surface, at least a portion of which is covered with a first coating including a first drug, and an abluminal surface, at least a portion of which is covered with a second coating including a second drug. The first drug has a first eluting profile based on the first coating, and the second drug has a second eluting profile based on the second coating, the first eluting profile being different from the second eluting profile. Methods of making the same are also provided.
Abstract:
According to an aspect of the invention, implantable or insertable medical devices are provided which contain the following: (a) one or more porous regions comprising pores and (b) one or more therapeutic agents which are (i) contained within the porous region, (ii) disposed beneath the porous region, or (iii) both. Moreover, the porous regions are capable of undergoing a change in configuration, such that the pores undergo a change in configuration, upon subjecting the porous regions to activating stimuli.
Abstract:
According to an aspect of the present invention, implantable or insertable medical devices are provided which contain the following: (a) substrate having one or more depressions that contain at least one therapeutic agent and (b) a porous membrane disposed over the substrate and the one or more depressions, which regulate transport of chemical species between the therapeutic-agent-containing depressions and the exterior of the device. The substrate and the porous membrane are formed of different materials each with a different thermal expansion coefficient. Moreover, one of the substrate and the porous membrane at least partially surrounds the other. Other aspects of the present invention are directed to methods of making such medical devices, and methods of treatment using such medical devices.
Abstract:
According to an aspect of the invention, implantable or insertable medical devices are provided which contain the following: (a) one or more porous regions comprising pores and (b) one or more therapeutic agents which are (i) contained within the porous region, (ii) disposed beneath the porous region, or (iii) both. Moreover, the porous regions are capable of undergoing a change in configuration, such that the pores undergo a change in configuration, upon subjecting the porous regions to activating stimuli.