Abstract:
Medical devices having a coating comprising an ionic polymer for electromagnetically-controlled release of a therapeutic agent. Release of the therapeutic agent from the coating is facilitated or modulated by the application of an electromagnetic field to the medical device. Exposure to the electromagnetic field may cause the release of the therapeutic agent in various ways, including electrochemical changes in the ionic polymer, structural changes in the coating and/or ionic polymers, changes in the permeability of the coating, changes in the orientation of the ionic polymers, or motion of the ionic polymers. Also disclosed are methods for delivering a therapeutic agent using electromagnetic fields.
Abstract:
An implantable metallic medical device having a dual-layered coating with a primer layer having functional groups capable of forming an organo-metallic complex with iron species and a second biocompatible polymer layer. The primer layer is baked onto the metallic medical device functioning as a tie layer between the surface of the medical device and a second biocompatible polymer layer disposed on the primer layer. Baking improves tie layer adhesion and in some cases provides an organo-metallic complex with the metal substrate. The second biocompatible polymer may can a therapeutic agent.
Abstract:
The invention is directed to mechanisms and methods that reduce the delamination of a therapeutic agent from a stent. The mechanisms include holes (channels, wells, and other hole configurations), protrusions, sintered metal cores, clamps/staples, pins, and stainless steel shields.
Abstract:
The invention is directed to mechanisms and methods that reduce the delamination of a therapeutic agent from a stent. The mechanisms include holes (channels, wells, and other hole configurations), protrusions, sintered metal cores, clamps/staples, pins, and stainless steel shields.
Abstract:
An endoprosthesis, such as a stent, includes a ceramic, such as IROX, having a select morphology and composition and a polymer coating, both of which are deposited by pulsed laser deposition.
Abstract:
An abrasive, fluid jet cutting apparatus, and its method of construction and operation, are disclosed that reduce the wear and erosion problems typically experienced in the cutting jet's mixing tube. This improved fluid jet cutting apparatus comprises (a) a chamber having an inlet for receiving a pressurized fluid jet, a port for receiving a flow of abrasive particles which are entrained into the fluid jet, and an exit through which the fluid jet and entrained abrasives exit the chamber, (b) a mixing tube having an entry port for receiving said fluid jet and entrained abrasives, an inner wall for directing the flow of said fluid jet and entrained abrasives, and an outlet port through which said fluid jet and entrained abrasives exit said tube, wherein the tube entry port is proximate the chamber exit, (c) a lubricating fluid reservoir that surrounds at least a portion of the outer wall of the mixing tube, (d) wherein at least a portion of the mixing tube wall is porous, and (e) wherein the lubricating fluid passes from the lubricating reservoir and through the porous wall to lubricate at least a portion of the surface of the mixing tube wall so as to resist erosion of the tube wall when the fluid jet and entrained abrasives flow through the mixing tube.
Abstract:
A nozzle apparatus for use with an abrasive fluid jet cutting system, and its method of construction and operation, are disclosed that reduce the wear and erosion problems typically experienced in the cutting jet's nozzle. This improved nozzle apparatus comprises (a) a nozzle having an entry port for receiving a slurry consisting of a carrier fluid and abrasive particles, an inner wall for directing the flow of the slurry, and an outlet port through which the slurry exits the nozzle, (b) wherein at least a portion of the nozzle wall is porous, and (c) a lubricating fluid chamber that surrounds the porous portion of the outer wall of the nozzle, the chamber having a port where a lubricating fluid enters the chamber, with the chamber port connecting to an input pipe which connects to a filter for filtering contaminants that might clog the pores of the porous portion of the nozzle. The nozzle operates by having the lubricating fluid pass from the lubricating reservoir and through the porous wall to lubricate at least a portion of the surface of the nozzle inner wall so as to resist erosion of the wall, as well as result in an abrasive slurry jet with improved coherence and cutting efficiency.