Abstract:
According to various embodiments, a fleet management system is provided for capturing, storing, and analyzing telematics data to improve fleet management operations. The fleet management system may be used, for example, by a shipping entity (e.g., a common carrier) to capture telematics data from a plurality of vehicle sensors located on various delivery vehicles and to analyze the captured telematics data. In particular, various embodiments of the fleet management system are configured to analyze engine idle data in relation to other telematics data in order to identify inefficiencies, safety hazards, and theft hazards in a driver's delivery process. The fleet management system may also be configured to assess various aspects of vehicle performance, such as vehicle travel delays and vehicle speeds. These analytical capabilities allow the fleet management system to assist fleet managing entities, or other entities, in analyzing driver performance, reducing fuel and maintenance costs, and improving route planning.
Abstract:
Embodiments of the present invention provide methods, systems, computer program products, and apparatuses for determining whether a street segment is a one-way street segment or a bi-directional segment, validating map data, and/or updating map data. In one embodiment, a method for determining whether a street segment is a one-way street segment or a bi-directional segment is provided. The method comprises receiving vehicle telematics data associated with one or more vehicles during one or more time periods, the vehicle telematics data indicating a street segment traveled by the one or more vehicles during the one or more time periods; and based at least in part on the vehicle telematics, determining whether the street segment is a one-way street segment or a bi-directional segment.
Abstract:
Various embodiments of the present invention are directed to a mapping management computer system. According to various embodiments, the mapping management computer system may be configured for updating geographical maps by assessing map data and operational data including vehicle telematics data to identify portions of a vehicle path that do not correspond to known travel paths. In various embodiments, the system is configured to define these identified portions as new known travel paths corresponding to a public road, private road, parking lot lane, or the like, and update the map data to reflect the new known travel paths.
Abstract:
Systems, methods, apparatuses, and computer program products are provided for determining carbon emissions of one or more vehicles. For instance, in one example embodiment, an apparatus may calculate miles traveled by the vehicles along a predefined route and may calculate a fuel usage of the vehicles for traveling along the route to obtain one or more fuel values. The apparatus may also analyze data indicating the miles traveled and the fuel values to determine fuel efficiency values corresponding to the vehicles traveling the route. The apparatus may also determine an estimate of an amount of carbon emissions for each of the vehicles based in part on applying at least one carbon emission value to respective fuel values associated with corresponding determined fuel efficiency values.
Abstract:
Systems, methods, apparatuses, and computer program products are provided for determining carbon emissions of one or more vehicles. For instance, in one example embodiment, an apparatus may calculate miles traveled by the vehicles along a predefined route and may calculate a fuel usage of the vehicles for traveling along the route to obtain one or more fuel values. The apparatus may also analyze data indicating the miles traveled and the fuel values to determine fuel efficiency values corresponding to the vehicles traveling the route. The apparatus may also determine an estimate of an amount of carbon emissions for each of the vehicles based in part on applying at least one carbon emission value to respective fuel values associated with corresponding determined fuel efficiency values.
Abstract:
Computer program products, methods, systems, apparatus, and computing entities are provided for determining the accuracy of map data. In one embodiment, map data and collected telematics data can be compared. The difference between the map data and the telematics data can be used to determine the accuracy of the map data.
Abstract:
Systems, methods, apparatuses, and computer program products are provided for determining carbon emissions of one or more vehicles. For instance, in one example embodiment, an apparatus may calculate miles traveled by the vehicles along a predefined route and may calculate a fuel usage of the vehicles for traveling along the route to obtain one or more fuel values. The apparatus may also analyze data indicating the miles traveled and the fuel values to determine fuel efficiency values corresponding to the vehicles traveling the route. The apparatus may also determine an estimate of an amount of carbon emissions for each of the vehicles based in part on applying at least one carbon emission value to respective fuel values associated with corresponding determined fuel efficiency values.
Abstract:
Computer program products, methods, systems, apparatus, and computing entities are provided for forecasting travel delays corresponding to streets, street segments, geographic areas, geofenced areas, and/or user-specified criteria. And from the forecasted travel delays, speed and travel times that take into account such travel delays can be determined.
Abstract:
Various embodiments of the present invention are directed to a fleet management computer system configured for forecasting travel delays within a geographic area. According to various embodiments, the fleet management computer system is configured to assess operational data, including vehicle telematics data. In various embodiments, the fleet management computer system is further configured to determine, based on the operational data, a value indicative of the average amount of travel delay time per unit of distance within the geographic area, such as the average amount of idle time second per mile of travel with the geographic area.
Abstract:
A portable bag is provided, comprising: a plurality of surfaces constructed of a foldable material and comprising at least a front surface and a rear surface connected relative to each other by a pair of side surfaces, a bottom surface, and a top surface opposite the bottom surface; at least two handling openings, the at least two handling openings being integrally defined on at least one of the plurality of surfaces, the at least two handling openings being positioned substantially adjacent opposing sides of the at least one of the plurality of surfaces; and an interior liner further defining the interior compartment of the portable bag, the interior liner being positioned intermediate the interior compartment and the plurality of surfaces, at least two portions of the interior liner being inset relative to the plurality of surfaces to define respective cavities substantially aligned with the at least two handling openings.