Abstract:
A device may manage end-to-end traffic across a network based on adjusting Quality of Service (QoS) parameters. The device may receive performance requirements for packets corresponding to different applications and QoS levels within segments across the network, and measure performance values along the segments across the network. The device may also identify the application data flows and their associated network locations failing to meet performance values across network segments, and detect an application data flow failing to meet end-to-end (E2E) performance requirements. The device may determine network location(s) to adjust the QoS parameters of the detected application data flow, and adjust its QoS parameters at the determined network location(s) to bring the detected application data flow into compliance with its E2E performance requirements, while maintaining E2E performances compliance of other application data flows.
Abstract:
A system may be configured to establish a communication between a first user device and a second user device, where the first and second user devices are associated with different service providers that provide different networks with which the first and second user devices are respectively associated. The establishing may include determining capability information, associated with the second user device, without requesting the capability information from the telecommunications network with which the second user device is associated. The establishing may further include transcoding the communication based on the capability information associated with the second user device.
Abstract:
A server device may receive a message from a first user device, the message being destined for a second user device; determine a call session control function (CSCF) server device associated with the second user device; and output, based on the determining, the message to the CSCF server device.
Abstract:
Credit card fraud prevention techniques are disclosed in which the authorization of a payment card may be performed using information obtained from a mobile device (e.g., a smart phone) associated with a user who initiates a point-of-sale payment card transaction. In one implementation, a device may receive a request for authorization of a payment associated with a payment card; and obtain location information relating to a location of a mobile device associated with a user of the payment card. The device may determine, based at least on a location of the point-of-sale terminal and the location of the mobile device, whether to authorize the request for authorization of the payment.
Abstract:
A device is configured to detect that a user device has failed to receive a call attempt for a call intended for the user device and from a calling party, and determine, based on the detection, that the calling party has not left a voicemail message associated with the call. The device is configured to store missed call information, associated with the call, and send a first missed call notification to the user device, where the first missed call notification includes the missed call information. The device is configured to detect that the user device has not received the first missed call notification, and send a second missed call notification to the user device, where the second missed call notification includes the missed call information.
Abstract:
A server device may receive a call setup request from a first user device; provide the call setup request towards a second user device; receive a provisional response message based on providing the call setup request; and provide the provisional response message towards the first user device. The first or second user device may be connected to a network device to provide or receive the call setup request, the provisional, a response to the call setup request, or an acknowledgement. The server device may provide, based on receiving the call setup request or the provisional response, one or more messages towards the first user device or towards the second user device to prevent the first or second user device from disconnecting from the network device, to reduce a delay in receiving by the first user device, the provisional response and the response to the call setup request.
Abstract:
A system may include a macro cell base station configured to determine a service quality associated with the macro cell base station; determine whether the service quality is below a quality threshold; and instruct a small cell base station to switch from a sleep mode to an awake mode, when the service quality is below the quality threshold. The system may further include a small cell base station, located within a coverage area of the macro cell base station, configured to enter an awake mode, when instructed to enter the awake mode by the macro cell base station; and inform the macro cell base station that the small cell base station is in awake mode. The macro cell base station may be further configured to hand over one or more user devices to the small cell base station, when the small cell base station is in the awake mode.
Abstract:
A system may include a first network device, configured to establish first and second channels with a user device, the first and second channels being channels of a network layer of an Open Systems Interconnect (“OSI”) model, receive traffic associated with the user device, and output the traffic via one of the first channel or the second channel. The system may also include a second network device, configured to receive the traffic outputted by the first network device, identify via which channel, of the first and second channels, the traffic was outputted, determine a paging scheme associated with the identified channel, generate a downlink data notification (“DDN”) request, the DDN request indicating the determined paging scheme, and output the DDN request to a third network device, wherein the third network device performs paging, based on the determined paging scheme, to locate the user device.
Abstract:
One or more devices may receive an instruction to generate an index for a customer associated with a base station and may generate the index based on receiving the instruction. The index may include one or more spaces to store a corresponding one or more access identifiers (IDs) used to allow a user device to connect to the base station. The one or more devices may receive an instruction to add an access ID to the index; generate the access ID based on a format of the access ID, a customer type, a customer ID, or a space ID; store the access ID in one of the one or more spaces of the index; and provide the access ID to the user device and the base station. The access ID may permit the user device to connect to the base station to access a network via the base station.
Abstract:
Voice calls may be filtered and/or modified to enhance the clarity of a speaker's voice. In one implementation, a device may receive an indication, from a caller associated with a call, that speech of the caller is to be modified to deemphasize an accent of the caller. The device may modify, based on the received indication, the speech of the caller to deemphasize the accent of the caller and transmit the modified speech to a callee associated with the call.