Abstract:
An optical interference display cell is described. A first electrode and a sacrificial layer are sequentially formed on a transparent substrate and at least two openings are formed in the first electrode and the sacrificial layer to define a position of the optical interference display cell. An insulated heat-resistant inorganic supporter is formed in each of the openings. A second electrode is formed on the sacrificial layer and the supporters. Finally, a remote plasma etching process is used for removing the sacrificial layer.
Abstract:
A first electrode and a sacrificial layer are sequentially formed on a substrate, and then first openings for forming supports inside are formed in the first electrode and the sacrificial layer. The supports are formed in the first openings, and then a second electrode is formed on the sacrificial layer and the supports, thus forming a micro electro mechanical system structure. Afterward, an adhesive is used to adhere and fix a protection structure to the substrate for forming a chamber to enclose the micro electro mechanical system structure, and at least one second opening is preserved on sidewalls of the chamber. A release etch process is subsequently employed to remove the sacrificial layer through the second opening in order to form cavities in an optical interference reflection structure. Finally, the second opening is closed to seal the optical interference reflection structure between the substrate and the protection structure.
Abstract:
The method of manufacturing an optical interference color display is described. A first electrode structure is formed over a substrate first. At least one first area, second area and third area are defined on the first electrode structure. A first sacrificial layer is formed over the first electrode structure of the first area, the second area and the third area. Moreover, a second sacrificial layer is formed over the first sacrificial layer inside the second area and the third area. In addition, a third sacrificial layer is formed over the second sacrificial layer inside the third area. The etching rates of all sacrificial layers are different. Then, a patterned support layer is formed over the first electrode structure. Next, a second electrode layer is formed and the sacrificial layers are removed to form air gaps. Therefore, the air gaps are effectively controlled by using the material having different etching rates.
Abstract:
An optical interference color display comprising a transparent substrate, an inner-front optical diffusion layer, a plurality of first electrodes, a patterned support layer, a plurality of optical films and a plurality of second electrodes is provided. The inner-front optical diffusion layer is on the transparent substrate and the first electrodes are on the inner-front optical diffusion layer. The patterned support layer is on the inner-front optical diffusion layer between the first electrodes. The optical film is on the first electrodes and the second electrodes are positioned over the respective first electrodes. The second electrodes are supported through the patterned support layer. Furthermore, there is an air gap between the second electrodes and their respective first electrodes.
Abstract:
The method for fabricating reflector plate for a reflective liquid crystal display and the device is disclosed. The present invention includes the formation of a protection layer over the glass substrate having thin film transistors and a layer of transparent electrodes on top, followed by the formation of a layer of undulating resin over the protection layer. If the reflector plate to be produced is a semi-transmissive type, a light-transmitting region is created over the protection layer. Since the protection layer is created in advance of the undulating resin outgrowth, the present method can effectively prevent reflection from the exposure stage during the lithography process, thus the problem of abnormal pattern marks occurring on the reflective surface can be avoided, and the exposure time and the production yield are enhanced.
Abstract:
An interference display unit with a first electrode, a second electrode and posts located between the two electrodes is provided. The characteristic of the interference display unit is that the second electrode's stress is released through a thermal process. The position of the second electrode is shifted and the distance between the first electrode and the second electrode is therefore defined. A method for fabricating the structure described as follow. A first electrode and a sacrificial layer are sequentially formed on a substrate and at least two openings are formed in the first electrode and the sacrificial layer. A supporter is formed in the opening and the supporter may have at least one arm on the top portion of the supporter. A second electrode is formed on the sacrificial layer and the supporter and a thermal process is performed. Finally, The sacrificial layer is removed.
Abstract:
An optical interference color display is provided. The optical interference color display comprises a color filtering substrate, a patterned support layer, a plurality of first electrodes, a plurality of optical films and a plurality of second electrodes. The patterned support layer and the first electrodes are positioned on the color filtering substrate with the patterned support layer between the first electrodes. The optical films are positioned on the first electrodes. The second electrodes is positioned over the first electrodes and supported through the patterned support layer such that an air gap with identical thickness is produce between every pair of second electrode and first electrode. Using the color filtering substrate to show color images, air gap between the first electrodes and the second electrodes are identical and hence simplifies the manufacturing process.
Abstract:
A hydrophobic layer covers the cavity-side surface of the bottom electrode of the interferometric modulation pixel. Consequently, the hydrophobic layer prohibits the hydrophilic surface of the bottom electrode from the adsorption of water molecules, thereby preventing the top electrode from being pulled toward the bottom electrode when the interferometric modulation pixel is active.
Abstract:
An optical interference display panel is disclosed that has a substrate, an optical interference reflection structure, and a protection structure. The optical interference reflection structure has many color-changeable pixels and is formed on the substrate. The protection structure is adhered to the substrate with an adhesive and encloses the optical interference reflection structure between the substrate and the protection structure. The adhesive is used to hermetically isolate the optical interference reflection structure from water, dust and oxygen in the air. Moreover, the protection structure prevents the interference reflection structure from being damaged by an external force.
Abstract:
A distribution density of supports and the spacing therebetween are adjusted to improve a restorability of a light-reflection electrode of a color-changeable pixel. When the spacing between the supports is decreased or the distribution density thereof is increased, a tension per unit area of the light-reflection electrode is raised. If an external force is applied to the light-reflection electrode, the tension caused by the supports will counteract the force and allow the light-reflection electrode to successfully return to the original state after the external force is removed.