摘要:
Provided is a thermal inkjet printhead. The inkjet printhead includes a substrate; an insulating layer formed on the substrate; a heater formed on the insulating layer and an electrode to apply current to the heater; a chamber layer that is stacked on the insulating layer and includes an ink chamber; a nozzle layer that is stacked on the chamber layer and includes a nozzle; and at least a heat transfer layer that is formed inside the insulating layer and dissipates heat generated in by the heater toward the substrate.
摘要:
A method of fabricating inkjet print heads usable in an ink jet printer. The method of fabricating ink jet print heads includes preparing a plurality of ink jet print heads on a wafer while forming sub sidewalls around the ink jet print heads when the ink jet print heads are being prepared, attaching protection films onto the sub sidewalls of the wafer and the ink jet print heads, and dicing the ink jet print heads and detaching the individual ink jet print heads from the wafer. In the method, the ink jet print heads are diced in a wafer unit. Particularly, connect pads of the ink jet print heads can be prevented from being contaminated by the protection films.
摘要:
Disclosed is a method for forming a plurality of metal structures having different heights on a semiconductor substrate. The disclosed method for manufacturing a metal structure having different heights includes: forming a plurality of seed layers, to have heights corresponding to the metal structure to be formed, on a semiconductor substrate so that those layers can be electrically separated, performing a plating process using a plating mold, and applying different currents to the respective seed layers so that the plating thickness can be adjusted for each of the seed layers. Accordingly, a plurality of metal structures having different heights can be obtained by a plating mold forming process and a plating process that are performed just once, respectively.
摘要:
Provided are a schottky diode having an appropriate low breakdown voltage to be used in a radio frequency identification (RFID) tag and a method for fabricating the same. The schottky diode includes a silicon substrate having a structure in which an N-type well is formed on a P-type substrate, an insulating layer surrounding a circumference of the N-type well so as to electrically separate the N-type well from the P-type substrate, an N+ doping layer partly formed in a portion of a region of an upper surface of the N-type well, an N− doping layer partly formed in the other portion of a region of the upper surface of the N-type well, a cathode formed on the N+ doping layer, and an anode formed on the N− doping layer.
摘要:
Provided are a schottky diode having an appropriate low breakdown voltage to be used in a radio frequency identification (RFID) tag and a method for fabricating the same. The schottky diode includes a silicon substrate having a structure in which an N-type well is formed on a P-type substrate, an insulating layer surrounding a circumference of the N-type well so as to electrically separate the N-type well from the P-type substrate, an N+ doping layer partly formed in a portion of a region of an upper surface of the N-type well, an N− doping layer partly formed in the other portion of a region of the upper surface of the N-type well, a cathode formed on the N+ doping layer, and an anode formed on the N− doping layer.
摘要:
A method of fabricating an inkjet printhead. The method of fabricating an inkjet printhead includes sequentially forming an insulating layer, a heater, and an electrode on a substrate and forming a passivation layer on the insulating layer to cover the heater and the electrode; forming a trench that exposes the substrate by sequentially etching the passivation layer and the insulating layer; forming a sacrificial layer to form an ink chamber on the passivation layer to fill the trench; forming a seed layer to provide a plating on the sacrificial layer and the passivation layer; forming a nozzle mold on the seed layer positioned over the heater; forming a plating layer on the seed layer to a predetermined thickness; forming an ink feed hole by etching a rear surface of the substrate to expose the sacrificial layer which is filled in the trench; forming a nozzle by sequentially removing the nozzle mold and the seed layer positioned under the nozzle mold; and forming the ink chamber by removing the sacrificial layer which is exposed by the nozzle and the ink feed hole.
摘要:
A low leakage Schottky diode and fabrication method thereof. The Schottky diode includes a n-type semiconductor; an anode having a circular periphery formed in a region above the n-type semiconductor; and a cathode formed in a region above the n-type semiconductor and having a pattern surrounding and set apart from the outer periphery of the anode. Because there are no edges at the anode and cathode interface, leakage current is minimized.
摘要:
A semiconductor device using schottky diodes for removing noise, a fabrication method, and an electrostatic discharge prevention device are provided. The semiconductor device includes a P-well substrate; insulation layers deposited on etched regions of the substrate; an N-well layer deposited on an etched region of the P-well substrate between the insulation layers; P+ type implants injected to a first region and a second region of the N-well layer; and first and second metals formed in schottky contact on the first and second regions, respectively. The method includes etching away regions of a P-well substrate and depositing an insulation substance; etching away the P-well substrate and depositing the insulation substance between the insulation layers to create an N-well layer; injecting P+ type implants to a first region and a second region of the N-well layer; and forming first and second metals in schottky contact on the first and second regions, respectively.
摘要:
A low leakage Schottky diode and fabrication method thereof. The Schottky diode includes a n-type semiconductor; an anode having a circular periphery formed in a region above the n-type semiconductor; and a cathode formed in a region above the n-type semiconductor and having a pattern surrounding and set apart from the outer periphery of the anode. Because there are no edges at the anode and cathode interface, leakage current is minimized.