Abstract:
A synchromesh device for a transmission includes: a shaft; a sleeve; an idler gear; a gear piece; a synchronizer ring; a first spline, a second spline and a third spline, the first spline of the sleeve being engageable with each of the second spline of the gear piece and the third spline of the synchronizer ring; and a first chamfer, a second chamfer and a third chamfer, formed at one end of the first spline, one end of the second spline and one end of the third spline, respectively, for a spline-engagement and for a thrust-through operation. The first chamfer of the sleeve includes a small-diameter side thrusting through the third chamfer at the time of shifting and a large-diameter side thrusting through the second chamfer at the time of shifting. A chamfer angle of the large-diameter side is smaller than a chamfer angle of the small-diameter side.
Abstract:
[Subject]To rapidly rise a temperature of lubricant in a transmission housing of a hybrid drive power apparatus when the lubricant temperature is lower than a preset lower limit value.[Solution]A control system of a hybrid drive power apparatus of the type which comprises a transmission housing provided therein with a first input shaft to be applied with drive power from an engine through a first friction clutch and a second input shaft to be applied with the drive power of the engine through a second friction clutch, first and second gear-shift mechanisms respectively assembled with the first and second input shafts, a final output shaft in drive connection with each output shaft of the gear-shift mechanisms, a motor-generator in drive connection with the first input shaft or the second input shaft, and a driven mechanism in drive connection with the final output shaft, wherein the control system includes a temperature sensor for detecting a temperature of lubricant stored in the transmission housing, and control means for selecting a shift-step in the first or second gear-shift mechanism assembled with the input shaft in drive connection with the motor-generator when the lubricant temperature detected by the sensor is lower than a preset lower limit value so that drive torque larger than that required for driving the driven mechanism is transferred to the final output shaft, for activating the motor-generator as an electric motor after selection of the shift-step , and for engaging the first or second friction clutch so that the drive torque of the engine is transferred to the final output shaft through a gear set at the selected shift-step in the first or second gear-shift mechanism.
Abstract:
A transmission includes: a casing of the transmission; a shaft rotatably supported by the casing and having an oil passage; plural gears mounted on the shaft. The lubricant is partly lifted and stirred in response to a shift operation implemented by selectively engaging and rotating the gears. The transmission further includes a lubricating mechanism placed at a position higher than the shaft and having an upper end opening in an upward direction so as to collect and store the lifted lubricant. The lubricating mechanism is provided with an oil supply port through which the lubricant is guided to the oil passage of the shaft.
Abstract:
An apparatus comprises a changeover mechanism which is able to change a connection state of an electric motor output shaft to any one from alternatives consisting of “an IN-Connection State” in which a power transmission path is provided between a transmission input shaft and the electric motor output shaft, “an OUT-Connection State” in which a power transmission path is provided between the transmission output shaft and the electric motor output shaft, and “a neutral connection state” in which no transmission path therebetween is provided. The changeover is carried out based on a combination (area) of a vehicle speed V and a required driving torque T. As for the changeover, an (first, second) IN-connection area is more enlarged and the OUT-Connection area and the neutral connection area are more narrowed, as a temperature of a lubricating oil is lower.
Abstract:
A speed control method for an automatic transmission includes a first synchronizing process, in which a first clutch portion is operated to be in an engaging state in order to synchronize a first input shaft to a power source, a second synchronizing process, in which the first input shaft is synchronized to the output shaft by operating a gear train connected the first input shaft so as to be in an engaging state, after the first clutch portion is operated so as to be in the disengaging state and a torque transmission path switchover process for switching a torque transmitting path from a second input shaft to the first input shaft by operating the first clutch portion so as to be in an engaging state while the second clutch portion is operated so as to be in an disengaging state.
Abstract:
An operating device for a manual transmission apparatus includes: a plurality of operation shafts, supported at a housing to move in an axial direction thereof and selectively engaging one of a plurality of shift gear sets by one of the plurality of the operation shafts being moved in the axial direction thereof; a shift-and-select shaft, supported at the housing, selecting one of the plurality of the operation shafts by rotating in a circumferential direction of the shift-and-select shaft and moving the selected operation shaft in the axial direction of the selected operation shaft by moving in the axial direction of the shift-and-select shaft; an operating portion for manually operating the shift-and-select shaft; and an inertia unit, including an engagement portion, which is engageable with the shift-and-select shaft, pivotably supported at the housing, and pivoting in response to a movement of the shift-and-select shaft in the axial direction thereof.
Abstract:
A method of manufacturing a helical gear, includes a gear cutting process for forming a roughly-processed gear by applying a gear cutting to an outer circumferential surface of a blank, and a tooth surface forming process for forming a tooth surface by pressing a rolling die against a roughly-processed tooth surface of the roughly-processed gear, wherein a length of a portion of the roughly-processed tooth surface, to which a plastic deformation is applied by the rolling die, in a face width direction is formed to be shorter than a length of a face width of the roughly-processed tooth surface.
Abstract:
A cooling structure of a clutch apparatus for a transmission includes a housing, a partition wall provided inside the housing, first and second chambers respectively formed inside the housing at first and second sides of the partition wall, a clutch mechanism provided inside the first chamber. A cylindrical clutch case including an opening is provided at an outer circumference of the clutch mechanism. The cooling structure further includes a first communication passage communicating with the first and second sides of the partition wall, at least one helical protrusion provided at an outer cylindrical surface of the clutch case, and a guiding cylinder provided at an outer circumference of the clutch case with a space between the helical protrusion and the guiding cylinder. The helical protrusion guides the coolant existing between the clutch case and the guiding cylinder to the first chamber from an axial end portion of the guiding cylinder.
Abstract:
A vehicle includes an engine, a pair of side frames extending along a vehicle body in front-rear direction of the vehicle, a transmission adapted to be axially connected with the engine and adapted to be transversely mounted on a vehicle body, includes an input shaft, a first counter shaft, a second counter shaft, a first gear mechanism, a second gear mechanism, a third gear mechanism, and a transmission case, wherein the first and third gear mechanisms are arranged close to the engine, the second gear mechanism is arranged more distant from the engine, the second counter shaft is arranged above the input and the first counter shaft, and the transmission case forms a cut-out portion at an upper portion of the back wall portion of the transmission case.
Abstract:
A transmission for a vehicle includes first to fourth counter shafts arranged in parallel with one input shaft, a reduction gear set including first to fourth reduction gears respectively provided at an output shaft and first to third counter shafts for connecting the output shaft and the corresponding counter shafts, an intermediate gear set including a driving gear, a driven gear and an idling gear for connecting the input shaft and the fourth counter shaft, and first to third gear mechanisms each provided between corresponding two shafts and each having two gear sets and one switching clutch provided between the corresponding two gear sets for selectively establishing a power transmitting path between the corresponding two shafts via one of the two gear sets or via the other one of the two gear sets.