Abstract:
An electronic device includes a movable mirror system to selectively reflect an incident image projection beam traveling along a first path toward a second path different than a first path. The image projection beam displays a corrected image at a first location but would otherwise display an uncorrected image at a second location when the movable mirror system reflects the image projection beam toward the second path. The electronic device also includes an optical correction system having at least one corrective optic element to correct the image projection beam to display a corrected image at the second location when the movable mirror system reflects the image projection beam toward the second path.
Abstract:
A device disclosed herein includes a feedback measuring circuit to measure a signal flowing through a movable MEMS mirror. Processing circuitry determines a time at which the signal indicates that a capacitance of the movable MEMS mirror is substantially at a maximum capacitance. The processing circuitry also determines, over a window of time extending from the time at which the signal indicates that the capacitance of the movable MEMS mirror is substantially at the maximum to a given time, a total change in capacitance of the movable MEMS mirror compared to the maximum capacitance. The processor further determines the capacitance at the given time as a function of the total change in capacitance, and determines an opening angle of the movable MEMS mirror as a function of the capacitance at the given time.
Abstract:
A device described herein includes a movable MEMS mirror, with a driver configured to drive the movable MEMS mirror with a periodic signal such that the MEMS mirror oscillates at its resonance frequency. A feedback measuring circuit is configured to measure a signal flowing through the movable MEMS mirror. A processor is configured to sample the signal at first and second instants, generate an error signal as a function of a difference between the signal at the first instant in time and the signal at the second instant in time, and determine the opening angle of the movable MEMS mirror as a function of the error signal.
Abstract:
A packaged MEMS device, wherein at least two support structures are stacked on each other and are formed both by a support layer and a wall layer coupled to each other and delimiting a respective chamber. The chamber of the first support structure is upwardly delimited by the support layer of the second support structure. A first and a second dice are accommodated in a respective chamber, carried by the respective support layer of the first support structure. The support layer of the second support structure has a through hole allowing wire connections to directly couple the first and the second dice. A lid substrate, coupled to the second support structure, closes the chamber of the second support structure.
Abstract:
A touch controller is coupled to a touch screen and detects a first gesture at a first point on the touch screen. The first gesture includes physical contact of the touch screen by a user device at the first point. The touch controller detects a second gesture that is associated with movement of the user device from the first point to a second point on the touch screen. The second gesture includes detecting movement of the user device within a sensing range from the first point to the second point. The sensing range corresponds to an orthogonal distance from a surface of the touch screen. The touch controller detects a third gesture at the second touch point. The third gesture includes physical contact of the touch screen at the second touch point. Upon detecting the first, second and third gestures the touch controller performs a corresponding action.
Abstract:
A fixed-size data packet switch comprising: 1) N input ports for receiving incoming fixed-size data packets at a first data rate and outputting the fixed-size data packets at the first data rate; 2) N output ports for receiving fixed-size data packets at the first data rate and outputting the fixed-size data packets at the first data rate; and 3) a switch fabric interconnecting the N input ports and the N output ports. The switch fabric comprises: a) N input buffers for receiving incoming fixed-size data packets at the first data rate and outputting the fixed-size data packets at a second data rate equal to at least twice the first data rate; b) N output buffers for receiving fixed-size data packets at the second data rate and outputting the fixed-size data packets at the first data rate; and c) a bufferless, non-blocking interconnecting network for receiving from the N input buffers the fixed-size data packets at the second data rate and transferring the fixed-size data packets to the N output buffers at the second data rate.
Abstract:
An embodiment is a circuit for use with a display device, the circuit including: a first input node configured to be operatively coupled to a first port of a data source device that provides the display device with data, to receive a first direct voltage used for a real-time display of the data on the display device; and at least one output node, configured to operatively provide the display device with at least one output voltage generated based on the first direct voltage, wherein the first port is isolated from a data port used to transmit the data.
Abstract:
An imaging assembly for an image sensor may include a lens, a transparent substrate and two aspherical optical coatings on each side of the substrate. The imaging assembly can also incorporate an opaque coating with an opening in-line with the lens to form an aperture, an anti-reflection coating, and an infrared filter coating.
Abstract:
The image sensor includes an array of pixels, each pixel having a photo-diode, for providing a pixel voltage, an analog-to-digital converter (ADC) operable to convert the pixel voltage to a digital value and a memory for storing the digital value. Read circuitry is included for reading out the digital values from the pixels of the array in a predetermined order. The image sensor may be configured such that a counter incorporates the memory, and the counter may be adapted to operate as a shift register. The counters of two or more pixels may be connected to form one or more chains such that digital values can be read out in a bit-serial manner.
Abstract:
An image sensor has an array of pixels. Each column has a first and a second column line connected to a read-reset amplifier/comparator which acts in a first mode as a unity gain buffer amplifier to reset the pixels via the first lines, and in a second mode acts as a comparator and AD converter to produce digitized reset and signal values. The reset and signal values are read out a line at a time in interleaved fashion. Reset values are stored in a memory and subsequently subtracted from the corresponding signal values. The arrangement reduces both fixed pattern and kT/C noise.