Abstract:
The present invention provides a method for extracting heat-sensitive Antarctic krill oil comprising the following steps. Firstly, frozen Antarctic krill is thawed and minced; a surfactant is added to the minced Antarctic krill to form a supercritical micelle system; extract the Antarctic krill multiple times after pressurizing and liquefying mixed gases; at the same time, a low-carbon alcohol solvent is added to strip the material in the critical micelle; after the extraction is completed, the extractant is removed; the extraction product and the residue after the extraction are subsequently collected; the heat-sensitive Antarctic krill oil can be obtained by high-speed centrifugal separation of the oil-water mixed extraction product. The present method has the advantages of simple operation, low extraction pressure and high safety. The extraction method of gas pressure liquefaction is completed under low temperature sealing conditions.
Abstract:
Disclosed herein are multidentate dinuclear cyclometallated complexes. The complexes are suitable as emitting materials or host materials in OLED devices, the materials having one of the following structures:
Abstract:
The present invention provides an anti-fouling and anti-corrosion agent for the marine steel structure surface and preparation method thereof. The emulsion is made of raw materials at the following mass ratios: 1100 to 1500 parts of a polyurethane monomer, 1000 parts of polyether glycol, 200 to 400 parts of an alcohol chain extender, 100 to 250 parts of a hydrophilic chain extender, 200 to 400 parts of epoxy resin polyols, 100 to 150 parts of triethylamine, 400 to 1000 parts of an acrylate monomer, 1000 to 1500 parts of a graphene oxide-protamine composite emulsion, and 5 to 20 parts of an initiator. The solvent-free and composite film-forming resin emulsion of the present invention has both anti-fouling and anti-corrosion functions, which applies to a production of a green and environmental marine coating and protects the marine steel structure surface to prevent from organism attachment and sea water corrosion.
Abstract:
A device and a process for producing undecylenic acid methyl ester using methyl ricinoleate as raw material are provided. The device comprises a feed pump, a raw material pre-heater, a microwave catalytic reactor, a microwave generator, a temperature controller and an infrared sensor, a condenser, a product tank and a discharge pump. The feed pump is connected with the raw material pre-heater, which is connected with the inlet of the microwave catalytic reactor. The outlet of the microwave catalytic reactor is connected with the condenser, which is connected to the product tank and the discharge pump. The microwave catalytic reactor is located in the microwave generator, which is connected with the temperature controller and the infrared sensor. The process is as follows: high-purity methyl ricinoleate, used as the raw material, is converted to methyl undecene and heptaldehyde by microwave-assisted pyrolysis process, followed by isolation and purification to produce methyl undecene.
Abstract:
Disclosed in the present invention are 4-(5-amino-6-hydroxybenzoxazol-2-yl)ammonium benzoate shown in formula (I) and the preparation method and use thereof. The preparation method comprises: fully reacting 4-(5-amino-6-hydroxybenzoxazol-2-yl)benzoic acid shown in formula (II) or 4-(5-amino-6-hydroxybenzoxazol-2-yl)carboxamide benzoate, as a raw material, with ammonia in an aqueous solvent, and directly heating the obtained reaction liquid to remove excess ammonia, so as to obtain 4-(5-amino-6-hydroxybenzoxazol-2-yl)ammonium benzoate. The mass of the 4-(5-amino-6-hydroxybenzoxazol-2-yl)ammonium benzoate (ABAA) prepared in the present invention can reach a polymer grade (where the purity is above 99.5%, the content of metal ions is below 200 ppm, and containing no DMF polymerization inhibition impurities), and the 4-(5-amino-6-hydroxybenzoxazol-2-yl)ammonium benzoate can be used as an AB type monomer for preparing PBO and modified PBO fibers, the resulting PBO having an intrinsic viscosity ηof up to 38/dl/g, and the method has such features as ABAA being highly soluble in PPA, a fast polymerization speed, a short time of 2-4 h, a low temperature of 150° C., a high molecular weight of the polymer, fibers of excellent tensile property, being easy to industrialize, etc.
Abstract:
A method for manufacturing a compound refractive lens for focusing X-rays in two dimensions. The method includes the following steps: 1) manufacturing a mother lens; 2) manufacturing a daughter lens; and 3) assembling the mother lens and the daughter lens. The assembly of the mother lens and the daughter lens includes: aligning square embedded lens bodies of the daughter lens with square holes of the mother lens, respectively, for allowing the first parabola-shaped holes on the mother lens and the second parabola-shaped holes on the daughter lens to form an orthogonal structure; and inserting and pressing the square embedded lens bodies into the corresponding square holes, respectively. The method of the invention has advantages of high-precision for manufacturing and calibration of optical axis, and meanwhile the compound refractive lens manufactured based the method has high X-rays focusing efficiency.
Abstract:
A gas-liquid contact tray with fixed valves for mass transfer, in which the fixed valve comprising an upstream portion, a midportion and a downstream portion is made by punch from the tray deck so as to form as a deflector, and the upstream portion and the downstream portion are integrated with the tray deck, characterized in that said midportion has a central plane portion and downward inclined margins, and the tray deck is further provided with perforations which are arranged between the fixed valves adjacent in the liquid flow direction. The gas-liquid contact tray with fixed valves for mass transfer according to the present invention has a low liquid entrainment, low liquid weeping, a high mass transfer capacity and good turn-down characteristics.
Abstract:
This invention relates to a catalyst for ammonia synthesis. The main phase of the catalyst is a non-stoichiometric ferrous oxide expressed as Fe.sub.1-x O, which is structurally in a Wustite crystal phase form having the rock salt face-centered cubic lattice with lattice paracueter of 0.427-0.433 nm. This catalyst, which has quick reduction rate and high activity, and remarkably lowers the reaction temperature, is especially applicable as an ideal low-temperature, low-pressure ammonia synthesis catalsyt and can be widely used in ammonia synthesis industry.
Abstract:
A method for asymmetrically preparing L-phosphinothricin by oxidation-reduction reaction through biological multienzyme coupling, where D,L-phosphinothricin as a raw material is catalyzed by an enzyme catalysis system to obtain L-phosphinothricin, wherein the enzyme catalysis system comprises a D-amino acid oxidase mutant for catalyzing D-phosphinothricin in D,L-phosphinothricin into 2-carbonyl-4-[hydroxy(methyl)phosphono] butyric acid and a transaminase for catalytic reduction of the 2-carbonyl-4-[hydroxy(methyl)phosphono] butyric acid into L-phosphinothricin; the D-amino acid oxidase mutant is obtained by mutation of D-amino acid oxidase in wild strain Rhodotorula taiwanensis at one of the following sites: (1) M213S-N54V-F58E; (2) M213S-N54V-F58E-D207A; (3) M213S-N54V-F58E-D207A-S60T. According to the present invention, the D-amino acid oxidase mutant provides better catalytic efficiency, and when racemic D,L-phosphinothricin is used as a substrate for catalytic reaction, the conversion rate is much higher than that of the wild type enzyme, and the PPO yield is also greatly improved.
Abstract:
A method for measuring the diameter of filament diffraction fringes by frequency domain calculation comprising: building a set of diffraction optical path measurement system and capturing diffraction fringe images; determining the starting point of the imaging range; Simulating the electromagnetic field propagation process in Fraunhofer diffraction, and determining the optimal fringe range considering the noise caused by the difference in CCD sensitivity; Finally calculating the filament diameter by Fourier transform for different lengths of fringe. The final value of the calculated filament diameter is obtained by fitting an envelope to the variation of the diameter. The invention is simple in calculation and has little dependence on the experimental device, which means the superiority of using the frequency domain for parameter measurement, and the measurement accuracy is in the sub-nanometer level. In addition, the invention proves the feasibility of extracting the fringe period information in the frequency domain.