Abstract:
A positioning apparatus includes a first portion (123) having a first opening (125) for alignment with a port entry point. A second portion (127) is positionable for alignment with the first opening from a plurality of different positions. An actuation mechanism (142) is coupled to at least one of the first portion and the second portion to set relative positions of the first and second portions to permit a tool axis formed between the first and second portions to be aligned through the first opening such that a tool (104) provided on the tool axis would include a known position and orientation.
Abstract:
A compact, lightweight manipulation system that excels in operability and has a force feedback capability is provided.When automatic operation of a slave manipulator 105 that follows manual operation of a master manipulator 101 is bilaterally controlled by means of communication, the force acting on the slave manipulator is fed back to the master manipulator by operating the master manipulator primarily under electrically-driven speed control and the slave manipulator primarily under pneumatically-driven force control. Therefore, in the master manipulator, it is not necessary to compensate for the dynamics and the self-weight of the master manipulator in the motion range of a user, allowing highly accurate, broadband positional control, which is specific to an electrically-driven system, and in the slave manipulator, nonlinearity characteristics specific to a pneumatically-driven system presents passive softness, provides a high mass-to-output ratio, and produces a large force.
Abstract:
Robotic and/or surgical devices, systems, and methods include kinematic linkage structures and associated control systems configured to facilitate preparation of the system for use. One or more kinematic linkage sub-systems may include joints that are actively driven, passive, or a mix of both. A set-up mode employs an intuitive user interface in which one or more joints are initially held static by a brake or joint drive system. The user may articulate the joint(s) by manually pushing against the linkage with a force, torque, or the like that exceeds a manual articulation threshold. Articulation of the moving joints is facilitated by modifying the signals transmitted to the brake or drive system. The system may sense completion of the reconfiguration from a velocity of the joint(s) falling below a threshold, optionally for a desired dwell time. The system may provide a detent-like manual articulation that is not limited to mechanically pre-defined detent joint configurations. Embodiments of the invention provide, and can be particularly well-suited for manual movement of a platform supporting a plurality of surgical manipulators in a robotic surgical system or the like without having to add additional input devices.
Abstract:
A robotic system for steering a flexible needle during insertion into soft-tissue using imaging to determine the needle position. The control system calculates a needle tip trajectory that hits the desired target while avoiding potentially dangerous obstacles en route. Using an inverse kinematics algorithm, the maneuvers required of the needle base to cause the tip to follow this trajectory are calculated, such that the robot can perform controlled needle insertion. The insertion of a flexible needle into a deformable tissue is modeled as a linear beam supported by virtual springs, where the stiffness coefficients of the springs varies along the needle. The forward and inverse kinematics of the needle are solved analytically, enabling both path planning and correction in real-time. The needle shape is detected by image processing performed on fluoroscopic images. The stiffness properties of the tissue are calculated from the measured shape of the needle.
Abstract:
A spatial linkage including an inboard gimbal plate that provides a ground for the spatial linkage, an outboard gimbal plate, and at least three links that couple the outboard gimbal plate to the inboard gimbal plate. Each link has a longitudinal axis and two pivotal couplings disposed at opposite ends of the longitudinal axis. Each link is pivotally coupled to the outboard gimbal plate at a first end of the longitudinal axis and pivotally coupled to the inboard gimbal plate at a second end of the longitudinal axis opposite the first end. The pivotal couplings allow the outboard gimbal plate to move relative to the inboard gimbal plate and preventing relative rotation between the outboard gimbal plate and the inboard gimbal plate. Counterweight is coupled to at least one of the links on the opposite side of the inboard gimbal plate from the outboard gimbal plate.
Abstract:
The present invention relates generally to medical devices and methods. The present medical devices comprises a platform comprising a magnetically-attractive material, and a camera coupled to the platform and configured to be moved in at least three degrees of freedom relative to the platform, where the camera's movement in each respective degree of freedom is controlled by a separate actuator coupled to the platform. The medical devices further comprise a housing disposed around at least a portion of the camera, the housing being at least partially transparent, and a wiper arm configured to move relative to the housing. Some embodiments of the present multi-degree-of-freedom cameras for a medical procedure, comprises a platform comprising a magnetically-attractive material, an apparatus to moving the platform within a body cavity of a patient when the apparatus is outside the body cavity, the apparatus comprising a magnetic assembly, and a camera coupled to the platform, and configured to be moved in at least three degrees of freedom relative to the platform, where the camera's movement in each respective degree of freedom is controlled by a separate actuator coupled to the platform.
Abstract:
A surgical system for use in performing medical procedures on a body of a patient is provided. The system includes a manipulator having a tool mounting arrangement including a power transmitter. The manipulator is capable of moving the tool mounting arrangement with at least one degree of freedom. The system has a tool support including a power receiver. A sterile barrier is arranged between the robotic mechanism and the tool support to isolate the robotic mechanism from the sterile environment. The tool support is engageable with the tool mounting arrangement with the sterile barrier therebetween. The power transmitter and power receiver can wirelessly transmit power across the sterile barrier between the manipulator and the tool support when the tool support is engaged with the tool mounting arrangement.
Abstract:
Featured is a robot and a needle delivery apparatus. Such a robot comprises a plurality of actuators coupled to control locating any of number of intervention specific medical devices such as intervention specific needle injectors. Such a robot is usable with image guided interventions using any of a number of types of medical imaging devices or apparatuses including MRI. The end-effector can include an automated low needle delivery apparatus that is configured for dose radiation seed brachytherapy injection. Also featured is an automated seed magazine for delivering seeds to such an needle delivery apparatus adapted for brachytherapy seed injection.
Abstract:
A robotic system for steering a flexible needle during insertion into soft-tissue using imaging to determine the needle position. The control system calculates a needle tip trajectory that hits the desired target while avoiding potentially dangerous obstacles en route. Using an inverse kinematics algorithm, the maneuvers required of the needle base to cause the tip to follow this trajectory are calculated, such that the robot can perform controlled needle insertion. The insertion of a flexible needle into a deformable tissue is modeled as a linear beam supported by virtual springs, where the stiffness coefficients of the springs varies along the needle. The forward and inverse kinematics of the needle are solved analytically, enabling both path planning and correction in real-time. The needle shape is detected by image processing performed on fluoroscopic images. The stiffness properties of the tissue are calculated from the measured shape of the needle.
Abstract:
A user interface system comprises a plurality of linkages connected between a platform and abase. The linkages permit motion of the platform over at least a portion of a spherical surface. A support assembly coupled between the platform and the base comprises a spherical joint having a centre of rotation substantially concentric with a centre of the spherical surface. The spherical joint constrains motion of the platform to the spherical surface. The system may include a sensor corresponding to each linkage. Each sensor may be coupled to sense a movement of its corresponding linkage in response to motion of the platform over the portion of the spherical surface. A user-manipulable handle may be coupled to the platform so that the user can move the platform.