Abstract:
A filter arrangement includes a cleaning mechanism for cleaning at least one screen filter of the filter arrangement. The cleaning mechanism has a flush chamber, a central hollow core that extends through the flush chamber, and suction nozzles fitted to the core. The core extends between opposing axial ends that are located outside of the flush chamber in exposure to substantially similar pressures at least during a cleaning operation of the cleaning mechanism.
Abstract:
A suction nozzle assembly, comprising a tube coupled to a pressure sink at a distal side thereof, a nozzle, a resilient element which couples said nozzle to a proximal side of said tube and a deformable housing which bridges a gap between said proximal side of said tube and said nozzle. Optionally, a pressure equalizer, for example, a through aperture, is formed in said nozzle.
Abstract:
The oil side-flow cleaning device includes a heating unit (11) installed between the oil tank and the filter unit (10) so that, when the oil temperature is below a defined limit value, oil flows through the filter unit (10) in such a way as to bypass the filtering function and is heated; and so that, when the oil temperature is above the defined limit, oil flows through the filter unit (10) so as to be subjected to the oil filtering function. In addition or as an alternative, the oil side-flow cleaning device comprises a backflush unit including a backflush collecting tank (17) and a backflush nozzle (18), wherein, when the device is in backflush mode, oil flows through the filter medium (16) in a second, opposite direction as a function of the position of the backflush nozzle (18) relative to the filter medium (16).
Abstract:
The presently disclosed subject matter is directed to a filtration system. The filtration system comprising a housing and at least one filter assembly extending within the housing. Each of the at least one filter assembly comprising a filter element disposed within the main filtering chamber; a cleaning assembly comprising a suction shaft. The suction shaft comprising at least one suction nozzle along a portion thereof, and being sealed at its one end and configured with at least one exhaust opening at its other end configured for extending within an exhaust chamber. Further comprising a liquid resistant driving mechanism disposed within the exhaust chamber and configured to impart the suction shaft with rotary motion and reciprocal linear motion. The suction shaft is adapted for selectively closing and opening the fluid drain port.
Abstract:
Provided are a suction apparatus for a fabric filter and a filtering device for liquid filtration using the same. A main suction slit and a sub-suction slit are provided in parallel by a partition. Thereby, pile threads undergo delayed straightening and fluctuation while going through the sub-suction slit and then are rapidly straightened in the main suction slit. Thus, a back-washing effect can be further improved.
Abstract:
A device for filtering for treating ballast water way and to a method for controlling same, and to a multicage-type device for filtering ballast water which automatically controls sequential backwashing and a method for same. In the multicage-type device for filtering ballast water, an automatic cleaning portion in each filtering device, in which differential pressure of at least a specific range with respect to pressure inside a body is generated, from a plurality of filtering units in the device for filtering, is sequentially actuated under the control of a control portion, thereby allowing smooth backwashing by preventing increase of back pressure during backwashing of foreign substances, and increasing repair/maintenance efficiency by installing a second pressure sensor for measuring pressure inside a filter in each of the filtering units via a pressure measurement aperture that penetrates an upper portion cover plate that covers a filter inlet aperture on the body.
Abstract:
Provided is a fluid filtration assembly including a housing configured with one or more filter units extending in fluid flow between a raw fluid inlet port and a filtered fluid outlet port, a filter rinsing assembly being in fluid communication with a rinsing fluid inlet port, and propulsion fluid inlet port being in flow communication with a propulsion mechanism for propelling one or both of the filter rinsing assembly and the filter unit with respect to one another. Further provided is a thread tensioning mechanism for controlling tension of coiled threads of a thread-type filtering cartridge.
Abstract:
Disclosed herein is a ballast water treatment device. The device includes a filtering unit filtering ballast water introduced into a ship using a filter, a vortex generating unit generating an artificial vortex in the ballast water filtered by the filtering unit, and an ultraviolet treatment unit having an ultraviolet lamp which sterilizes the ballast water discharged from the vortex generating unit using ultraviolet rays, thus preventing secondary contamination resulting from by-products, preventing a ballast tank from becoming contaminated, affording effective maintenance, and making it convenient to control. Further, an artificial vortex is formed in the ballast water when it is mixed, thus allowing a large quantity of ultraviolet rays to be radiated onto the ballast water passing through the ultraviolet treatment unit, therefore improving a sterilization effect.
Abstract:
A device for filtering a stream of water in a channel (2), includes: a wall (6) adapted to be mounted in the channel and including a through-opening, a filter member (10) mounted on the wall opposite the through-opening and including a filter surface projecting relative to the wall, the filter surface having a larger area than would have a flat filter surface fitted in the through-opening, the filter member including retaining members face to face with the filter surface for retaining the bodies that do not pass through the surface, a suction device disposed facing the retaining members, and elements for driving the filter member and/or the suction device in a relative movement of one in relation to the other such that the suction device is successively brought face to face with each retaining member.
Abstract:
Methods and apparatus for treating water and wastewater include the step of flowing a suspended solids stream generally upward through a sludge blanket region of a cloth disk filter vessel, thus forming a partially treated effluent composition and a solids-enriched sludge blanket. The partially treated effluent composition is allowed to flow generally upward to a cloth filter zone in the vessel after contacting the sludge blanket. The methods include flowing the suspended solids stream through one or more distribution headers positioned in the sludge blanket. An option is to provide a sludge concentration zone in the sludge blanket region, allowing sludge to flow into the sludge concentration zone to form concentrated sludge. Other methods and apparatus include backwash assemblies that backwash substantially the entire filter cassette surfaces, with or without use of a sludge blanket zone. Either the backwash assemblies or filter cassettes move in the latter methods and apparatus.