摘要:
A method comprising adding a multi-walled carbon nanotube synthesized by the vapor phase process to a nitric acid aqueous solution of not lower than 0.2 mol/L so as to dissolve a catalyst metal present in the multi-walled carbon nanotube, performing solid-liquid separation to isolate solid matter, and subjecting the isolated solid matter to heat treatment at a temperature higher than 150° C. gives a purified multi-walled carbon nanotube in which the amount of a metallic element left in the multi-walled carbon nanotube originating the catalyst metal is not smaller than 1000 ppm and not larger than 8000 ppm determined by ICP optical emission spectrometry and the amount of an anion left in the multi-walled carbon nanotube originating in the acid is smaller than 20 ppm determined by ion chromatography analysis.
摘要:
A filtration system that uses a filter to convert wastes in automotive exhausts into carbon nanotubes is disclosed. Metallic salts, such as iron salts, may be mixed with diesel fuel by way of using algal biodiesel to ensure homogenous suspension of the metallic salts in the diesel fuel. The metallic salts form a suitable catalyst to grow carbon nanotubes on a filter placed in the pathway of the diesel combustion exhaust. The filter surface may be composed of iron of similar catalyst. The filter may be placed along the pathway of exhaust streamlines preferably at an angle of more than 5 degrees and less than 15 degrees. The filter is heated to temperatures in the range of 200-1000 degrees Celsius. The filter described in this invention can work in its own or supplement existing filtration systems. The filtration system may produce a material that is commercially valuable, synthesized carbon nanotubes.
摘要:
We disclose a novel filter and process that converts the wastes in automotive exhausts into carbon nanotubes. The filter surface is composed of iron of similar catalyst. The filter is placed along the pathway of exhaust streamlines preferably at an angle of more than 5°. and less than 15°. The filter is heated to temperatures in the range of 200-1000° C. The filter described in this invention can work in its own or supplement existing filtration systems. The end product of this filtration system is a material that is commercially valuable. The synthesized carbon nanotubes are purified using ionic liquid solution that is capable of removing undesirable carbonated material and leaving 95% purified carbon nanotubes. The purified carbon nanotubes have a diameter of 20-50 nm and a length of 1-10 micro meters.
摘要:
The separation of single-walled carbon nanotubes (SWCNTs), by electronic type, using centrifugation of compositions of SWCNTs and surface active block copolymers in self-forming density gradient media.
摘要:
This invention provides an aligned single-layer carbon nanotube bulk structure, which comprises an assembly of a plurality of aligned single-layer carbon nanotube and has a height of not less than 10 μm, and an aligned single-layer carbon nanotube bulk structure which comprises an assembly of a plurality of aligned single-layer carbon nanotubes and has been patterned in a predetermined form. This structure is produced by chemical vapor deposition (CVD) of carbon nanotubes in the presence of a metal catalyst in a reaction atmosphere with an oxidizing agent, preferably water, added thereto. An aligned single-layer carbon nanotube bulk structure, which has realized high purify and significantly large scaled length or height, its production process and apparatus, and its applied products are provided.
摘要:
This invention intends to provide an aligned single-walled CNT aggregate and the like which can be produced easily and has a high specific surface area, in which individual CNTs are aligned and which has excellent shape processability due to low bulk density. The aligned single-walled CNT aggregate of this invention comprises a base material, catalyst particles with a density of 1×1010 to 5×1013N/cm2 disposed on the base material, and a plurality of single-walled carbon nanotubes (CNTs) grown from the fine particles of the catalyst, in which the plurality of single-walled CNTs have a specific surface area of 600 m2/g to 2600 m2/g, and a weight density from 0.002 g/cm3 to 0.2 g/cm3, and the alignment degree is defined by a specific condition or conditions.
摘要翻译:本发明旨在提供一种可以容易地制造并且具有高比表面积的对准的单壁CNT骨料等,其中单个CNT对准并且由于低堆积密度而具有优异的形状加工性能。 本发明的排列的单壁CNT骨料包括基材,设置在基材上的密度为1×10 10至5×10 13 N / cm 2的催化剂颗粒,以及多个单壁碳纳米管(CNT),其由 多个单壁CNT的比表面积为600m 2 / g〜2600m 2 / g,重量密度为0.002g / cm 3〜0.2g / cm 3的催化剂的微粒, 程度由具体条件或条件定义。
摘要:
A carbon nanotube film includes a first carbon nanotube group that is an aggregate of carbon nanotubes crosslinked to each other to form a network structure and a second carbon nanotube group that is an aggregate of carbon nanotubes having a diameter different from a diameter of the carbon nanotubes in the first carbon nanotube group, wherein the first carbon nanotube group and the second carbon nanotube group are in admixture.
摘要:
The invention relates to a method for synthesis of carbon nanotubes of the highest carbon purity by the process of vapour phase chemical deposition. The nanotubes produced can be used to advantage in all know applications of carbon nanotubes.
摘要:
Methods of preparing single walled carbon nanotubes are provided. Carbon containing gas is contacted with a supported metal catalyst under reaction conditions to yield at least 90% single walled carbon nanotubes and at least 1 gram single walled carbon nanotubes/gram metal catalyst. The support material may be calcined at temperatures between 150 and 600° C., and may have at least one oxidized planar surface. Reaction conditions include less than 10 atmospheres pressure and less than 800° C.
摘要:
Developed is high-efficiency synthesis method and apparatus capable of promoting the initial growth of carbon nanostructure by eliminating the initial fluctuation time and rising time in raw gas flow quantity. A high-efficiency synthesis method of carbon nanostructure according to the present invention is a high-efficiency synthesis method of carbon nanostructure, the method comprising: bringing raw material gas and a catalyst into contact with each other under reactive conditions so as to produce a carbon nanostructure, wherein: the initiation of contact of the raw material gas with the catalyst is carried out instantaneously. Reaction conditions such as temperature and raw material gas concentration are set so as to meet those for catalyst growth, and under the reaction conditions, the initiation of contact of raw material gas G with catalyst 6 is carried out instantaneously. Consequently, the initial growth of carbon nanostructure is positively carried out, and the height growth and thickness growth thereof can be effected in high efficiency. Further, high-density growth and short-time high-speed growth can be realized. The catalyst includes any forms of catalyst such as catalyst substrate, catalyst structure, catalyst powders and catalyst pellet. It is especially preferred to employ a system wherein the feed and interruption of the raw material gas G are intermittently controlled by means of an electromagnetic three-way valve 24.