Abstract:
Methods are provided for producing low sulfur diesel fuels by performing multi-stage hydroprocessing at low pressure on a distillate feed. A feedstock suitable for forming a diesel fuel product is hydrotreated at a hydrogen partial pressure of 500 psig or less in at least two reaction stages. In order to provide improved desulfurization and/or aromatic saturation activity in the final stage, the stages are configured so that the highest hydrogen pressure and/or highest hydrogen purity are delivered to the last hydrotreatment stage.
Abstract:
The present invention is generally directed to methods and systems for producing biofuels via biomass, waste plastic, and/or Fischer-Tropsch product feeds. Such methods and systems are an improvement over the existing art at least in that they are feed-tolerant (i.e., allow for variability) and provide an economy of scale, while typically retaining the environmental benefits associated with such processing of such feeds.
Abstract:
Methods are provided for hydrotreating high nitrogen feeds with improved results for nitrogen removal, aromatic saturation, and/or sulfur removal. The method includes hydrotreating the feed with a supported hydrotreating catalyst followed by a bulk metal catalyst, the hydrotreated effluent of which can be suitable for use as a feed to an FCC reactor.
Abstract:
Hydrocarbon feeds can be hydrotreated in a continuous gas-phase environment and then dewaxed in a liquid-continuous reactor. The liquid-continuous reactor can advantageously be operated in a manner that avoids the need for a hydrogen recycle loop. A contaminant gas can be added to the hydrogen input for the liquid-continuous reactor to modify the hydrogen consumption in the reactor.
Abstract:
A process for the preparation of Group II and Group III lube oil base stocks wherein liquid-continuous aromatics saturation is used to treat lube hydrocrackate. The treated hydrocrackate is then be sent to dewaxing unit and then optionally to a hydrotreating step.
Abstract:
A diesel fuel composition comprising a (1) sulfur content of less than 10 ppm; (2) a flash point of greater than 50° C.; (3) a UV absorbance, Atotal, of less than 1.5 as determined by the formula comprising Atotal=Ax+10(Ay) wherein Ax is the UV absorbance at 270 nanometers; and wherein Ay is the UV absorbance at 310 nanometers; (4) a naphthene content of greater than 5 percent; (5) a cloud point of less than −12° C.; (6) a nitrogen content of less than 10 ppm; and (7) a 5% distillation point of greater than 300 F and a 95% distillation point of greater than 600 F.
Abstract:
An aromatics/naphthalene rich stream obtained by processing heavy gas oil derived from tar sands and cycle oils derived from cracking heavy gas oil may optionally be blended and subjected to a hydrogenation process and a ring opening reaction typically in the presence of a zeolite, alumina, or silica alumina based catalyst which may contain noble metals and or copper or molybdenum to produce paraffinic feedstocks for further chemical processing.
Abstract:
Integrated hydroprocessing methods using high activity, low density catalysts are provided. The high activity catalysts allow for lower temperature operation, which reduces catalyst degradation, while the low density of the catalysts means a corresponding reduction in the amount of metal needed to fill a reactor volume. The methods allow for flexible processing of feedstocks with a variety of wax contents.
Abstract:
The invention relates to hydrocarbon fluids having high purity with respect to at least one of sulfur species, nitrogen species, oxygenated species, and unsaturated species, particularly hydrocarbon fluids low in aromatics, a method of making said hydrocarbon fluids, a catalyst for use in said method, an apparatus whereby said method may be practiced, and uses of said fluids.
Abstract:
A process for reducing content of sulphur compounds and polyaromatic hydrocarbons in a hydrocarbon feed having a boiling range between 200° C. and 600° C. is disclosed. The process comprises in combination contacting the feed and hydrogen over a hydrotreating catalyst and hydrotreating feed at hydrotreating conditions, cooling the hydrotreated effluent and hydrogen-rich gas from the hydrotreating reactor and contacting the effluent and hydrogen gas over a hydrotreating catalyst in a post-pretreatment reactor at a temperature sufficient to lower the polyaromatic hydrocarbon content.