Abstract:
An actuator for moving a closure between an open and a closed position. The actuator having a first mode, where the closure is free to move with respect to a closure frame, and a second mode where the actuator resists movement between the closure and the closure frame.
Abstract:
A vehicle door checker integrated with a power drive unit for an automobile door includes a direct current permanent magnet electric motor subject to cogging torque. The electric motor includes a central shaft. The vehicle door checker also includes a cogging torque increase device that is mounted to the central shaft externally of the motor. The cogging torque increase device includes pairs of oppositely magnetized permanent magnets that are mounted coaxially in a stator and rotor respectively about the motor shaft. The stator magnets and the rotor magnets shift into and out of alignment with each other as the shaft is rotated such that the motor is held in multiple discrete stable positions that correspond to check positions of an automobile door.
Abstract:
An arm structure of an electronic device is provided. The arm structure includes an arm body, a first cam disposed on one side of the arm body and including a first hole into which at least a portion of a rotating shaft providing a folding operation of the electronic device is inserted, a peak and a valley being formed around the first hole, a second cam arranged side-by-side on a same axis as the one side of the arm body, spaced apart from the first cam, and including a second hole into which at least a portion of the rotating shaft is inserted, a peak and a valley being formed around the second hole, and a connecting part disposed on another side of the arm body and fastened with a rotating part providing rotation of the electronic device.
Abstract:
An exemplary modular hold-open device is configured for use with a door closer comprising a body, a pinion rotatably mounted to the body, and an armature connected with the pinion. The modular hold-open device is configured to be mounted to the door closer, to selectively prevent rotation of the pinion by exerting on the pinion a resistive torque in a door-opening direction, and to cease exerting the resistive torque in response to a door-closing torque on the pinion exceeding a threshold torque to thereby permit rotation of the pinion in the door-closing direction.
Abstract:
An anti-ligature hinge for a door and associated methods and systems are provided. The anti-ligature hinge has a hinge bracket operatively associable with a support and a hinge member operatively associable with a leaf. The hinge member is connectable to the hinge bracket and rotatable relative to the hinge bracket about an axis of rotation. The hinge member can disconnect from the hinge bracket in response to a threshold force acting along or transverse to the axis or rotation. This hinge is for eliminating ligature points in doors where vulnerable individuals are to be left unsupervised.
Abstract:
A portable door guard used to secure the door at the hinge, particularly the wings of the hinge. The portable door guard comprises a retractable, non-permanently fixed device that can be secured around the hinge of the door from the inside to prohibit the door to open more than a gap. The portable door guard includes a center area designed to grip the hinge to limit the swinging movement of the hinge and adjusting means to configure the size of the gap.
Abstract:
A system for reducing an effective weight of a horizontally sliding object, wherein the object such as a door or window is retained in a track that allows substantially horizontal movement along a predetermined path. The door has an upper surface with a longitudinal cavity therealong, a metallic channel is disposed within the longitudinal cavity, and the channel receives a plurality of permanent magnets. The system also includes an elongate strip coinciding with the predetermined path and positioned adjacent the upper surface of the door. An adjustment mechanism is also provided for releasably adjusting the distance between the magnets and the elongate strip.
Abstract:
The invention relates to a method for controlling an actuator (1), particularly of a vehicle, wherein the actuator (1) is displaced in a predetermined position (4) by means of a drive (5). The force variable acting on the actuator (1) in the position (4) is determined, compared to a target value, and in case the target value is exceeded, the drive (5) is actuated for system relief. The invention further relates to an displacement system (8) for an actuator (1), particularly of a vehicle, comprising a drive (5) for displacing the actuator (1) and a control module (6), designed for the control of the drive (5) according to the method.
Abstract:
A sliding panel for use in an architectural opening is connected either at its top edge or bottom edge to a carrier that supports the panel with a magnetic system that includes a magnet and a ferrous member. The magnet is positioned on either the carrier or the panel and the ferrous member is on the other of the carrier or the panel with the magnet attracting the ferrous member to connect the panel to the carrier.
Abstract:
A gate opening and closing apparatus for moving a gate between a gate closed position which covers an access opening and a gate opened position. The apparatus comprises an electric motor for driving the gate between the open position and the closed position. A connecting arrangement connects the electric motor to the gate in order to enable powered movement of the gate between the gate opened and gate closed positions. A control unit in the form of a microprocessor control unit is operatively connected to the electric motor for control of the same and hence control of the movement of the gate. The gate normally remains unlocked at the closed position and is only locked when a force is applied to the gate tending to move same to the open position. In one embodiment, a positive locking mechanism, such as a solenoid lock, may be provided and which is automatically locked when an opening force is applied to the gate. In another embodiment, the gate is not positively locked and the electric motor applies a closing force to the gate to overcome any effort of an opening movement. The gate opening and closing mechanism is uniquely constructed in that there is no gear box which would otherwise preclude a manual opening of the gate in the event of emergency.