Abstract:
A valve control apparatus includes first and second engine valves; a first drive cam configured to rotate integrally with the drive shaft; a second drive cam provided on the drive shaft and configured to rotate integrally with the drive shaft; a swing cam configured to swing; a transmission mechanism configured to convert a rotation of the first drive cam into a swinging force and to transmit the swinging force to the swing cam; a first swing arm configured to open the first engine valve by a swing of the swing cam; a second swing arm configured to open the second engine valve by a rotation of the second drive cam; a control mechanism configured to vary a swing amount of the swing cam by varying an attitude of the transmission mechanism; and a connection changeover mechanism configured to connect and disconnect the first swing arm with/from the second swing arm.
Abstract:
A driver that reciprocates has its reciprocation divided into a non-actuating portion and an actuating portion. The driver in one embodiment positions a carrier that has two pins, each pin being slidably mounted in its slot on a housing. One of the pins is an output pin that may be linked to operatively position a valve of an internal combustion engine. The two slots are configured such that each pin, during its motion range, does effect a capture of the other pin such that the captured pin is generally stationary. When the output pin is captured, the driver reciprocation causes the non-output pin to perform a lost-motion traverse of its slot. When the non-output pin is captured, the driver reciprocation actuates the output pin. A linked pair of such embodiments driven by a single driver can thus alternately actuate two valves.
Abstract:
A variable valve system for an internal combustion engine includes a plurality of engine valves provided per one cylinder; a swing arm configured to perform an opening-and-closing operation of at least one of the plurality of engine valves by swinging about a fulcrum given by a support member; a variable lift mechanism configured to cause the swing arm to swing, and to vary a lift amount of the at least one of the plurality of engine to valves; a valve stop mechanism provided for the at least one of the plurality of engine valves and configured to stop the opening-and-closing operation of the at least one of the plurality of engine valves by producing a lost motion of the support member; and an engine-speed limiting section configured to variably limit a maximum rotational speed of the internal combustion engine in accordance with a displacement amount of the lost motion.
Abstract:
An internal combustion engine includes a driving shaft, a pair of camshafts for driving engine valves, a transmission connecting the driving shaft to a first of said camshafts and a transmission connecting the first camshaft to the second camshaft. The transmission connecting the two camshafts to each other includes a pair of articulated parallelogram mechanisms each having two crank members rotatable with end portions of the camshafts and connected to each by means of a connecting rod. The crank members are made up of circular discs eccentrically mounted on the camshafts and rotatably received in circular openings formed at the ends of the respective connecting rod. The two crank members rotatable with the same camshaft are spaced from each other by a determined angle.
Abstract:
A continuously variable valve lift device for a vehicle is provided, which includes a drive shaft rotating in association with a crank shaft and having a drive cam formed on an outer periphery thereof, a locker arm shaft provided apart from the drive shaft and having one end that supports a rocker arm rotating and rocking in association with the drive cam, output cams rotatably installed on the drive shaft to interlock with the other end of the rocker arm, and a variable drive part straightly moving the rocker arm shaft in a vertical direction of the rocker arm shaft to vary a valve lift. When a valve is shifted from the high-lift state to the low-lift state, a pumping loss is reduced to improve the fuel consumption ratio. Also, since an advance function is provided, an exhaust-side CVVT can be deleted to greatly reduce the manufacturing cost.
Abstract:
An engine with intake and exhaust valves that may be controlled with a circular cam lobe is provided. The rotating axis of the circular cam lobe is offset from the physical center of the cam lobe. This permits the cam lobe to impart a reciprocal opening and closing of the valve. To maintain the valve in the closed position, the interconnection between the cam lobe and the valve 12 may have a spring which is compressed to allow the valve to remain closed for a set duration of time while the cam lobe continues to rotate.
Abstract:
A valve stem which is located for axial movement; a valve lever is pivotally mounted at one end and is attached adjacent the other end to the end of the valve stem, the valve lever defines a track; a drive pin engages in the track the drive pin being mounted at one end of a first link the other end of the link being pivotally mounted about a fixed pivot, a second link is pivotally mounted at one end about moveable pivot, the first and second links being interconnected by an intermediate link pivotally attached to said first and second links at positions separated from their pivots, a drive link is pivotally connected at one end to the pivotal connection between the second link and intermediate link and at the other end to a crank, so that rotation of the crank will cause the linkage to oscillate and the drive pin to perform a reciprocating motion along an arcuate path; the trank has a first portion which is engaged by the drive pin when the valve is closed and coincides with the arcuate path of the drive pin and a second portion which diverges from the path of the drive pin, so that engagement of the second portion by the drive pin will cause the valve lever to move opening and closing the valve; and means being provided for movement of the pivot to vary the timing and duration of opening of the valve.
Abstract:
A valve mechanism includes a poppet type valve, a valve lever pivotally mounted at one end and attached at the other end to the end of the stem of the valve, the valve lever defines a track in which is located a drive pin and a drive mechanism is arranged to drive the drive pin in oscillatory manner; the track has a first portion which, when the valve is closed is engaged by the drive pin and coincides with the path of the drive pin, and a second portion which diverges from the path of the drive pin so that when engaged by the drive pin movement of the drive pin will cause the valve lever to move, opening and closing the valve. Preferably the mean position of oscillation of the drive pin is adjustable so that the duration and amplitude of valve opening may be varied.