Abstract:
An apparatus for measuring the optoelectronic characteristics of a light-emitting diode includes: a container including a light input port and a light output port; a measurement module connected to the light output port of the container; a sample holder under the container for holding a light-emitting diode under test, wherein a surface of the measurement module reflects more than 50% of the luminous flux generated by the light-emitting diode under test; and a light gathering unit between the container and the sample holder, wherein an interior wall of the light gathering unit reflects more than 50% of the luminous flux generated by the light-emitting diode under test.
Abstract:
A method for sorting a light source is to be implemented by a computer and includes configuring the computer to determine whether or not a to-be-sorted light source is different from a reference light source by comparing features of a curve associated with measured spectral data of the to-be-sorted light source, with features of a reference curve associated with reference spectral data of a reference light source.
Abstract:
A method for testing an LED die includes the following steps: setting control parameters; driving the LED die to emit light by applying an electric current to the LED die under the control parameters; detecting the wavelength of the light emitted by the LED die; and determining whether the LED die meets the predetermined electro-optical properties, based upon the relationship between the control parameters and the wavelength.
Abstract:
System(s), apparatus(es), and method(s) are provided for control of quality of light emitted from a group of solid-state light (SSL) sources that are part of an illumination fixture. The control is based at least in part on regulation of the spectral power distribution (SPD) of the light to match a SPD of a reference light source. A spectroscopic analyzer collects electromagnetic (EM) radiation emitted from the group of SSL sources and EM radiation substantially emitted from the reference light source. A first controller analyzes spectroscopic data related to SPDs of the group of SSL sources and the reference light source and, based on the analysis issues a configuration of the group of SSL sources. Implementation of the configuration causes the group of SSL sources to emit EM radiation with a SPD that nearly matches the SPD of the EM radiation substantially emitted from the reference light source.
Abstract:
A test system for Light-emitting diodes (LEDs) includes a microcontroller, a plurality of light sensors, a plurality of shielding members and a display module. Each of the plurality of light sensors is connected to the microcontroller and each of LEDs. Each of the plurality of light sensors is capable of detecting luminance of the plurality of LEDs respectively. Each of the plurality of shielding members is configured to prevent light outside of each of the plurality of shielding members from interfering with light emitted from each of the LEDs inside of each of the plurality of shielding members. The microcontroller is adapted to read light intensities sensed by the plurality of light sensors according to a predetermined sequence and send the light intensities to the display module to display the light intensities in the predetermined sequence.
Abstract:
An LED-based light tube for use in a conventional fluorescent fixture includes a housing including a light transmitting portion, at least one electrical connector attached to the housing and configured for engagement with the conventional fluorescent fixture, at least one LED arranged to produce light in a direction toward the light transmitting portion, a sensor operable to detect a brightness level and output a signal corresponding to the detected brightness level, and a controller in electrical communication with the at least one electrical connector, operable to: compare the signal to a predetermined value corresponding to a desired brightness level and control an amount of power provided to the at least one LED in response to the signal to adjust the light produced by the at least one LED to achieve the desired brightness level.
Abstract:
A fluorescence powder spraying device capable of detecting instantly color temperature of white light in a manufacturing process, comprising: a spraying region, provided with a movable nozzle and an LED component-to-be-sprayed; a measuring region, provided with a light source and a light detector; and a monitor plate, which can be moved in said spraying region and said measuring region. Said monitor plate undergoes at least a fluorescence powder spraying process with said LED components-to-be-sprayed in said spraying region, to form at least a fluorescence powder layer, and in said measuring region, use said light source to agitate said fluorescence powder layer on said monitor plate, and use said light detector to measure color temperature of white light, to detect speedily color temperature of said fluorescence powder layer, hereby raising. yield of LED component reaching the target color temperature.
Abstract:
An inspection machine capable of inspecting optical property and electrical property of a light emitting device is provided. The inspection machine includes a substrate table, a probe mechanism, a heating apparatus, a cooling apparatus, an image-sensing apparatus, a temperature-sensing apparatus and a moving mechanism. The probe mechanism is capable of moving toward the light emitting device to contact therewith. The heating apparatus is capable of heating the light emitting device within a first temperature range. The cooling apparatus is capable of cooling the light emitting device within a second temperature range. The image-sensing apparatus senses a light emitting image provided from the light emitting device. The temperature-sensing apparatus senses the present temperature of the light emitting device. The image-sensing apparatus is disposed on the moving mechanism. The moving mechanism is capable of moving the image-sensing apparatus. An inspecting method and an inspecting system for the inspection machine are also provided.
Abstract:
A retrofit light emitting diode (LED) module may include a carrier with at least one LED, a retrofit connection for mechanical and electrical contact-connection to conventional lamp holders, and an electronic system for driving the at least one LED. At least one part of the electronic system is integrated into the carrier, and the electronic system comprises a sensor system. A retrofit LED module system may include at least two retrofit LED modules and at least one control unit which regulates the retrofit LED modules in an adaptive and synchronized manner.
Abstract:
An optical property evaluation apparatus includes: a light conversion filter converting light emitted from an LED chip or a bare LED package, which is to be evaluated, into a different wavelength of light, and emitting a specific color of light; and an optical property measurement unit receiving the specific color of light emitted from the light conversion filter and measuring the optical properties of the received light.