Abstract:
In a method and apparatus for adjusting a table position in a medical data acquisition scanner, image data relating to a body region are generated by operation of the medical data acquisition scanner by running a scanning protocol. The scanning protocol is intended to be used independently of the body region that is mapped. An iso-mode, in which a relative position of the body region relative to the isocenter of the medical data acquisition scanner can be set via the table position in accordance with an optimization criterion, and on a ref-mode, in which the table position is set at a predetermined reference position, are provided. A mode of operation is selected from the iso-mode and the ref-mode as dependent on anatomical information relating to the body region and/or a relative position of the body region relative to the isocenter that ensues in the reference position, and before the running of and/or during the running of the selected scanning protocol, the table position is set according to the selected mode of operation.
Abstract:
A wearable device for monitoring a lactate threshold can include at least one magnet configured to provide a static magnetic field to an anatomical region, a power supply, and a radio frequency (RF) module connected to the power supply. The RF module can provide pulsating RF signals across the static magnetic field and emit energy into, and receive response signals from, the anatomical region over a period of time. The response signals can enable detection of a change in H+ concentration in the anatomical region, the change enabling detection of the lactate threshold. The wearable device can be used during a variety of exercises at selectable anatomical locations.
Abstract:
A method for fabricating electroactive polymer transducers, the includes providing an electroactive polymer film comprising an elastomeric dielectric polymer, forming an array of electrodes on the film, and sandwiching the electrode array between a top and bottom array of frame components to form an array of electroactive polymer transducers.
Abstract:
In a method and controller for controlling a magnetic resonance system, a sequence of synchronized control commands is transmitted to different system components of the magnetic resonance system. For different system components a number of control commands is supplied in a relative chronological order in relation to a defined system time, wherein the control commands in the relative chronological order are each allocated times that specify when a particular control command should be executed in relation to a defined system time. The control commands are passed in the relative chronological order to a data-converting interface, which forwards the control commands in a latency-compensating data transfer protocol via a bus system, which has a deterministic latency, to the individual system components.
Abstract:
A circuit arrangement including a plurality of amplifier stages to amplify an electrical RF signal for a magnetic resonance tomography device is provided. The plurality of amplifier stages is arranged on at least one circuit board. A circuit board of the at least one circuit board surrounds a cooling pipe.
Abstract:
A latching apparatus for housing cladding of a medical imaging device is provided. The latching apparatus has at least one first cladding component, a second cladding component and at least one latching unit. The at least one latching unit is disposed entirely on the first cladding component for a latching connection with the at least one second cladding component.
Abstract:
According to some aspects, a laminate panel is provided. The laminate panel comprises at least one laminate layer including at least one non-conductive layer and at least one conductive layer patterned to form at least a portion of a B0 coil configured to contribute to a B0 field suitable for use in low-field magnetic resonance imaging (MRI).
Abstract:
A magnetic resonance imaging (MRI) apparatus and a method of operating the MRI apparatus. The MRI apparatus includes: a monitoring unit configured to monitor an operation of the MRI apparatus; and a control unit configured to determine one of a plurality of power modes for the MRI apparatus based on the monitored operation and control the MRI apparatus to operate in the determined power mode.
Abstract:
According to some aspects, a method of suppressing noise in an environment of a magnetic resonance imaging system is provided. The method comprising estimating a transfer function based on multiple calibration measurements obtained from the environment by at least one primary coil and at least one auxiliary sensor, respectively, estimating noise present in a magnetic resonance signal received by the at least one primary coil based at least in part on the transfer function, and suppressing noise in the magnetic resonance signal using the noise estimate.
Abstract:
An electrically controlled valve (10) includes a shaft (36), a piezoelectric motor (34) affixed to an end of the shaft (36), a controller (54), a follower (42), a valve member (40), and a valve seat (28). The piezoelectric motor (34) drives the shaft with a first direction and a second opposite direction. The controller (54) provides power to the piezoelectric motor (34) to move the shaft with a first speed and a second speed, the first speed being faster that the second speed. The follower (42) receives the shaft (36), and slides relative to the shaft in response to the shaft moving with the first speed, and grips and moves with the shaft in response to the moving with the second speed and includes a valve member (40). The valve member (40) moves with the follower (42). The valve member (40) is configured to be moved by the follower (42) against the valve seat (28) to restrict fluid flow and to be moved by the follower (42) away from the valve seat to increase the fluid flow.