Abstract:
A liquid crystal display device includes a liquid crystal display panel, a compensation film for compensating a viewing angle decline caused by improper alignment of liquid crystal molecules in the liquid crystal display panel, and an isotropic layer between the compensation film and the liquid crystal display panel.
Abstract:
A first film (8) is formed between a substrate (1) and a signal electrode (3); ground electrodes (5) and (6) which constitute an optical waveguide device (10), and a second film (9) is formed between the substrate (1) and a signal electrode (4); ground electrodes (6) and (7). An optical phase modulator (10A) is composed of the substrate (1), an optical waveguide (2), the signal electrode (3), the ground electrodes (5) and (6), and the first film (8). An optical intensity modulator (10B) is composed of the substrate (1), the optical waveguide (2), the signal electrode (4), the ground electrodes (6) and (7), and the second film (9). The optical waveguide device (10) is composed of the optical phase modulator (10A) and the optical intensity modulator (10B), which are integrated monolithically.
Abstract:
There is provided a high performance optical waveguide type optical modulator with excellent long term reliability, in which contamination of the buffer layer in a forming process of a signal field adjustment region on the buffer layer by a lift-off method or an etching method, is prevented and DC drift thus suppressed. The optical waveguide type optical modulator 10 comprises a substrate 11 having an electro-optic effect, optical waveguides 12 formed on the surface of this substrate 11, a traveling-wave type signal electrode 13a and ground electrodes 13b which are provided on the substrate 11 and control a lightwave, and a buffer layer 14 provided between the electrodes 13 and the optical waveguides 12, and furthermore, a dielectric layer 15 is provided on the entire surface of the buffer layer 14 on the side of the electrodes 13, and a signal field adjustment region 16 which has a wider width than that of the traveling-wave type signal electrode 13a and is made of a material with a higher refractive index than that of the dielectric layer 15 is formed between the dielectric layer 15 and the traveling-wave type signal electrode 13a.
Abstract:
A panel for a flat panel display device is disclosed, which includes a substrate having signal wires and terminals respectively connected to the signal wires, each terminal having first, second and third conducting layer, an insulating layer, a protection layer, contact holes connected between the first conducting layer and the third conducting layer, and contact holes connected between the second conducting layer and the third conducting layer, the insulating layer being sandwiched in between the second conducting layer and the substrate, the first conducting layer being sandwiched in between the protection layer and the insulating layer, the protection layer being sandwiched in between the first conducting layer and the third conducting layer or the second conducting layer and the third conducting layer, the first conducting layer being isolated from the second conducting layer.
Abstract:
An optical structure is provided. The optical structure includes a substrate having a surface. A modified barium titanate is deposited on the surface of the substrate.
Abstract:
A method for fabricating ion exchange waveguides, such as lithium niobate or lithium tantalate waveguides in optical modulators and other optical waveguide devices, utilizes pressurized annealing to further diffuse and limit exchange of the ions and includes ion exchanging the crystalline substrate with a source of ions and annealing the substrate by pressurizing a gas atmosphere containing the lithium niobate or lithium tantalate substrate above normal atmospheric pressure, heating the substrate to a temperature ranging from about 150 degrees Celsius to about 1000 degrees Celsius, maintaining pressure and temperature to effect greater ion diffusion and limit exchange, and cooling the structure to an ambient temperature at an appropriate ramp down rate. In another aspect of the invention a powder of the same chemical composition as the crystalline substrate is introduced into the anneal process chamber to limit the crystalline substrate from outgassing alkaline earth metal oxide during the anneal period. In yet another aspect of the invention an anneal container is provided that allows for crystalline substrates to be annealed in the presence of powder without contaminating the substrate with the powder during the anneal process. Waveguides manufactured in accordance with the method exhibit superior drift performance.
Abstract:
In one aspect of the invention, a method for pressurized annealing of lithium niobate or lithium tantalate structures, such as optical modulators and optical wave guides, comprises pressurizing an oxygen atmosphere containing a lithium niobate or lithium tantalate structure above normal atmospheric pressure, heating the structure to a temperature ranging from about 150 degrees Celsius to about 1000 degrees Celsius, maintaining pressure and temperature to effect ion exchange or to relieve stress, and cooling the structure to an ambient temperature at an appropriate ramp down rate.
Abstract:
An optical waveguide device including an electro-optical crystal substrate having a top surface and a bottom surface; an optical waveguide path formed within a surface of the electro-optical crystal substrate; at least one electrode positioned above the optical waveguide path for applying an electric field to the optical waveguide path; and a silicon titanium oxynitride layer and a connecting layer for interconnecting the silicon titanium oxynitride layer to another surface of the electro-optical crystal substrate that is opposite to the surface in which the optical waveguide path is formed.
Abstract:
A panel for a flat panel display device is disclosed, which includes a substrate having signal wires and terminals respectively connected to the signal wires, each terminal having first, second and third conducting layer, an insulating layer, a protection layer, contact holes connected between the first conducting layer and the third conducting layer, and contact holes connected between the second conducting layer and the third conducting layer, the insulating layer being sandwiched in between the second conducting layer and the substrate, the first conducting layer being sandwiched in between the protection layer and the insulating layer, the protection layer being sandwiched in between the first conducting layer and the third conducting layer or the second conducting layer and the third conducting layer, the first conducting layer being isolated from the second conducting layer.
Abstract:
An optical waveguide device including an electro-optical crystal substrate having a top surface and a bottom surface; an optical waveguide path formed within a surface of the electro-optical crystal substrate; at least one electrode positioned above the optical waveguide path for applying an electric field to the optical waveguide path; and a silicon titanium oxynitride layer and a connecting layer for interconnecting the silicon titanium oxynitride layer to another surface of the electro-optical crystal substrate that is opposite to the surface in which the optical waveguide path is formed.