Abstract:
An acousto-optic (AO) frequency shifter includes an anisotropic crystal having an optical axis and an input face, and an acoustic transducer having electrodes affixed to the face for receiving an electrical signal and projecting an acoustic wave into the crystal. The anisotropic crystal is cut relative to the face so that the transducer is at an acoustic angle (θa) corresponding to a predetermined angle of incidence (θi) of an optical beam to be directed relative to the optic axis of the anisotropic crystal to substantially satisfy the parallel tangents phase matching condition.
Abstract:
An optical parametric device, for example an optical parametric generator or amplifier or oscillator, comprising a non-linear material (13) that is operable to generate a signal and an idler wave in response to being stimulated with a pump wave. The non-linear medium is such that the pump and idler waves are substantially collinear and the signal wave is non-collinear.
Abstract:
The present invention relates to a liquid crystal display panel with improved image contrast comprising an array of pixel regions and a sequence of a recycling backlight structure comprising broadband rear interference polar (RI-Polar) having a transmission axis AB with preset orientation, a spatial intensity modulation structure comprising a broadband front interference polar (FI-Polar) having a transmission axis approximately parallel to the transmission axis AB, a spectral filtering structure, and antireflection means. Each said pixel region spatially encompasses a plurality of subpixel regions. The RI-Polar and FI-Polar are multilayer structures of stacked layers. At least one layer of each structure is optically anisotropic, made by means of Cascade Crystallization Process and characterized by a globally ordered biaxial crystalline structure with an intermolecular spacing of 3.4±0.3 Å in the direction approximately parallel to the transmission axis AB. Said layer is transparent in the wavelength band of visible light, and is formed by rodlike supramolecules, which represent at least one polycyclic organic compound with a conjugated π-system and ionogenic groups.
Abstract:
A wavelength converter device is provided for generating a converted radiation at frequency ωg through interaction between at least one signal radiation at frequency ωs and at least one pump radiation at frequency ωp, including an input for the at least one signal radiation at frequency ωs, a pump light source for generating the at least one pump radiation at frequency ωp, an output for taking out the converted radiation at frequency ωg, a structure for transmitting the signal radiation, including two optical resonators having a non-linear material, having an optical length of at least 40*λ/2, λ being the wavelength of the pump radiation, and resonating at the pump, signal and converted frequencies ωp, ωs and ωg, wherein by propagating through the structure, the pump and signal radiation generate the converted radiation by non-linear interaction within the optical resonators.
Abstract:
Reflection means such as a mirror are provided on the output end of an optical fiber, and the input signal light and control light are returned to the optical fiber. Although the zero-dispersion wavelength of the optical fiber fluctuates in the longitudinal direction, if the length is relatively short, it is possible to manufacture a high yield of optical fibers, which monotonically changes the zero-dispersion wavelength. Therefore, a relatively short optical fiber with a monotonic zero-dispersion change can be used. Since the zero-dispersion change is monotonic and the optical fiber is short, the amount of change in the zero-dispersion wavelength is small and the bandwidth becomes broader when the control light is set at the position of the average zero-dispersion wavelength. Additionally, although the length of the optical fiber is short, the operating length is twice as long and thus the generation efficiency does not degrade.
Abstract:
A variable optical attenuator including: a birefringent element positioned to separate an input optical signal into two spatially separated, orthogonally polarized beams; a LC modulator positioned to receive the orthogonally polarized beams and selectively alter their polarizations; a reflective element positioned to reflect the beams back through the LC modulator and the birefringent element, wherein the birefringent element recombines orthogonally polarized components of the reflected beams to produce an output optical signal; and a controller coupled to the LC modulator to selectively cause the LC modulator to alter the polarizations of the orthogonally polarized beams, wherein during operation the controller is responsive to a request to variably attenuate the intensity of the output optical signal relative to the intensity of the input optical signal to one of multiple non-zero attenuation settings.
Abstract:
Wavelength converter device for generating a converted radiation at frequency Ωg through interaction between at least one signal radiation at frequency Ωg and at least one pump radiation at frequency Ωg, with an input for the at least one signal radiation at frequency Ωg; a pump light source for generating the at least one pump radiation at frequency Ωg, an output for taking out the converted radiation at frequency Ωg, a structure for transmitting the signal radiation, the structure including one optical resonator having a non-linear material, having an optical length of at least 40*η/2, wavelength η being the wavelength of the pump radiation, and resonating at the pump, signal and converted frequencies Ωp, Ωs, and Ωg. The structure has a further optical resonator coupled in series to the optical resonator, the further optical resonator having a non-linear material, having an optical length of at least 40*η/2, wherein η is the wavelength of the pump radiation, and resonating at the pump, signal and converted Ωp, Ωs and Ωg, wherein by propagating through the structure, the pump and signal radiation generate the converted radiation by non-linear interaction within the optical resonators.
Abstract:
A color liquid crystal display panel includes: a first substrate provided on a light source side; a second substrate provided on a viewer side so as to oppose the first substrate; a liquid crystal layer provided between the first substrate and the second substrate; a color filter layer provided between the first substrate and the second substrate; a first transflective film provided closer to the light source than the liquid crystal layer and the color filter layer for reflecting ambient light coming from the viewer side while transmitting therethrough light-source light coming from the light source side; and a second transflective film provided closer to the viewer than the color filter layer for reflecting the ambient light while transmitting therethrough the light-source light.
Abstract:
According to an embodiment of the invention, improved multipass second harmonic generation (SHG) is provided by the use of an inverting, self-imaging telescope. This embodiment ensures parallelism of all passes of all beams within the nonlinear medium. According to another embodiment of the invention, improved multipass SHG is provided by the use of a wedged phasor. This arrangement provides a simple adjustment of the relative phase of the pump beam and second harmonic beam between passes. According to a further embodiment of the invention, improved multipass SHG is provided by the use of an inverting self-imaging telescope in combination with a wedged phasor. This arrangement provides a simple adjustment of the relative phase of the pump beam and second harmonic beam between passes, and ensures parallelism of all passes of all beams within the nonlinear medium. This arrangement also allows corresponding passes of the pump beam and second harmonic beam to be made collinear within the nonlinear medium by design.
Abstract:
A tunable laser and laser tuning method based on the use of a tunable etalon in reflection as a mirror within a laser cavity and forming an end reflective surface thereof. The laser emission wavelength is not necessarily at a wavelength of peak etalon reflectivity. A preferred embodiment makes use of a microelectromechanical etalon to tune an external cavity semiconductor.