Abstract:
A dielectric ceramic composition containing a dielectric material and a glass, characterized in that the dielectric material is represented by the compositional formula a·Li2O-b·(CaO1-x—SrOx)-c·R2O3-d·TiO2 (wherein x satisfies 0≦x
Abstract translation:一种包含电介质材料和玻璃的电介质陶瓷组合物,其特征在于,所述电介质材料由组成式a表示。Li 2 O 2(CaO 1-x N - (其中x满足0≤x≤0.2)其中x满足0 <= x < 1; R为选自La,Y和其它稀土金属中的至少一种; a,b,c和d满足0 <= a <= 20摩尔%,0 <= b <= 45摩尔% c <20摩尔%,40 <= d <= 80摩尔%,a + b + c + d = 100摩尔%),玻璃含有至少30重量%的Bi 2 O 3, O3。
Abstract:
A multilayer electronic component comprises an inner multilayer portion and a pair of outer multilayer portions. The inner multilayer portion includes a plurality of first ceramic layers and a plurality of internal circuit element conductors which are alternately laminated and contain a glass component. A component amount ratio of an amount of the glass component in the second ceramic layers to an amount of a principal component of the second ceramic layers is larger than a component amount ratio of an amount of the glass component in the first ceramic layers to an amount of a principal component of the first ceramic layers.
Abstract:
A nonreducing dielectric ceramic contains a tungsten-bronze-type crystal phase including at least Ba, RE and Ti as elements, and a pyrochlore-type crystal phase including at least RE and Ti as elements, where RE is at least one rare-earth element. The relationship 0.10≦b/(a+b)≦0.90 is satisfied, where a is the maximum peak intensity assigned to the tungsten-bronze-type crystal phase and b is the maximum peak intensity assigned to the pyrochlore-type crystal phase determined by X-ray diffractometry. A ceramic electronic component includes an electronic component body composed of the nonreducing dielectric ceramic and a conductor in contact with the nonreducing dielectric ceramic.
Abstract:
Disclosed is a thick film capacitor comprising (a) a sintered layer of a ferroelectric material mainly consisting of one or more ferroelectric inorganic compounds having a perovskite structure and an inorganic binder having a eutectic composition which experiences a liquid phase at a temperature lower than the sintering temperature of the ferroelectric inorganic compounds, and (b) at least two electrodes formed on both surfaces of the sintered layer of the ferroelectric material. In the thick film capacitor of this invention, the perovskite structure of the ferroelectric inorganic compounds is not destroyed upon sintering. Therefore, a high degree of sintering, a good dielectric characteristic and high moisture and migration resistances can be obtained.
Abstract:
A ceramic glass material comprising a mixture of fine particles of barium titanate, leaded glass frit and an additive material containing manganese. A ceramic glass body and capacitor made from the material by firing the ceramic glass material to a peak temperature between 900.degree. C. and 1050.degree. C. in a non oxidizing atmosphere at which the glass softens. The capacitor has non precious metal electrodes with a melting point above the firing temperature which are co-fired with the ceramic glass material. Upon cooling the fired ceramic glass material and electrodes form a capacitor with the ceramic glass body separating the electrodes and providing a high dielectric constant and insulation resistance, and a low dissipation factor.
Abstract:
Glass ceramic materials having controllable temperature coefficients of dielectric constant or capacitance (TCC) are provided. The ceramic component of the composition possesses paraelectric properties at least over the temperature range of -55.degree. C. to 125.degree. C. and can be controllably crystallized from the glassy matrix initially formed. Heat treatment of the glass produces crystallization of the ceramic component and results in glass ceramic materials with controlled TCC values which are useful as capacitors, resonators, microwave substrates, and the like because of their low dielectric loss characteristics and temperature stability.
Abstract:
Dielectricpowder compositions of magnesium titanate plus a glass, useful for forming dielectric layers in multilayer electrode/dielectric structures on an alumina substrate. Also, dispersions of such compositions in a vehicle and the resultant multilayer structures.
Abstract:
The present invention relates to high dielectric constant ceramics which can be sintered to maximum density at low temperatures. The ceramic structures consist primarily of a skeleton which constitutes the refractory phase and an interstitial glass which serves simultaneously as a bonding agent and a fluxing agent which enables the ceramic structure to densify in the low temperature range. Among the preferred materials used to form the skeleton are polycrystalline materials which have a high dielectric constant, for example, barium titanate, complex dielectric materials such as lead bismuth niobate and the like. The interstitial glasses required are lead silicate based glasses.
Abstract:
Improved crossover dielectric compositions which are finely divided powders of glass and preformed celsian; the compositions are capable of producing printed capacitors of reduced dielectric constant.
Abstract:
THE DIELECTRIC PROPERTIES, PARTICULARALY THE DIELECTRIC CONSTANT AND DIELECTRIC STRENGTH, OF INORGANIC OXIDE GLASSCERAMIC MATEIRIALS IS IMPROVED BY SUBJECTING THE MATERIALS TO HOT, ISOSTATIC NOTROGEN GAS OR OXYGEN GAS PRESSURES DURING CRYSTALLIZATION.