Abstract:
An image-forming device having, in an envelope, an electron-emitting element, an image-forming member for forming an image by irradiation of an electron beam emitted from the electron-emitting element, and an electroconductive supporting member for supporting the envelope. The potential of the supporting member is controlled to not be higher than the maximum potential applied to the electron-emitting element. The electron-emitting element and the image-forming member can be placed in juxtaposition on the same substrate, an electro-conductive substrate can be additionally provided in opposition to the face of the substrate, and the supporting member can be connected electrically to one of the electrodes and also to the electro-conductive substrate.
Abstract:
In an electron-emitting device having a pair of electroconductors arranged on a substrate at an interval, a top of one electroconductor is higher than that of the other electroconductor and a groove extending from the interval region toward a position under a region where the one electroconductor is come into contact with the substrate is formed on the substrate. Deterioration of the electron-emitting device due to collision of charged particles is suppressed by the asymmetrical electron-emitting region, electron-emitting efficiency is improved, and a long life is realized.
Abstract:
A display device consists of an electron-emitting device which is a laminate of an insulating layer and a pair of opposing electrodes formed on a planar substrate. A portion of the insulating layer is between the electrodes and a portion containing an electron emitting region in between one electrode and the substrate. Electrons are emitted from the electron emission region by a voltage to the electrodes, thereby stimulating a phosphorous to emitting light.
Abstract:
To implement an electrode structure which brings about extinction of arc quickly in a reliable manner without maintaining discharge current, and provide an electron source and image display apparatus equipped with the electrode structure. Device electrodes 2 and 3 are partially narrowed in areas where they are connected to scan wiring 6 and signal wiring 4, and an insulating layer 5 which insulates the scan wiring 6 and signal wiring 4 are extended to cover the narrow portions of the device electrodes 2 and 3.
Abstract:
An image formation apparatus is disclosed which includes, within an enclosure configured by a pair of substrates placed face to face and an external frame placed between the substrates, an electron source placed on one of the pair of substrates, an image formation material placed on the other substrate, and spacers placed between the substrates, characterized in that the spacers and the external frame is conductive and device is provided for electrically connecting the spacers and the external frame so that the equipotential surfaces between the spacers and the external frame are quasi-parallel when driven.
Abstract:
An electron emission element includes: a pair of electrodes facing each other with a predetermined gap therebetween; a conductive thin film which bridges across the electrodes and has a narrow region in which a part of at least one side of two sides of an area bridging across the electrodes is close to the other side; and an electron emission section formed in the narrow region of the conductive thin film. In here, the narrow region is narrower than the width between the electrodes in a direction orthogonal to a direction where the electrodes face each other.
Abstract:
An electron-emitting device comprises a pair of electrodes and an electroconductive film arranged between the electrodes and including an electron-emitting region carrying a graphite film. The graphite film shows, in a Raman spectroscopic analysis using a laser light source with a wavelength of 514.5 nm and a spot diameter of 1 μm, peaks of scattered light, of which 1) a peak (P2) located in the vicinity of 1,580 cm−1 is greater than a peak (P1) located in the vicinity of 1,335 cm−1 or 2) the half-width of a peak (P1) located in the vicinity of 1,335 cm−1 is not greater than 150 cm−1.
Abstract:
A cathode substrate for an electron emission device includes a substrate, electron emission regions formed on the substrate, and one or more driving electrodes controlling the electrons emitted from the electron emission regions. A first insulating layer contacts the driving electrodes. A focusing electrode is provided in the cathode substrate to focus the electrons emitted from the electron emission regions. A second insulating layer is located between the driving electrodes and the focusing electrode. The materials used in the first and the second insulating layers have different etch rates.
Abstract:
The invention provides a composition including a metal and a photosensitive component, wherein a film pattern formed by subjecting the composition to an exposure to light and a development has a water-repellent property and becomes an electrically resistant film upon baking.
Abstract:
There is provided a method of manufacturing a member pattern having on a substrate, a patterned first belt-shaped member and a plurality of second belt-shaped members that are patterned over from the first belt-shaped member to the substrate, the method including: forming the first belt-shaped member by a printing method; and forming the second belt-shaped members by a process involving exposure and development using a photosensitive material.