Abstract:
A power control device for dynamically adjusting frequency includes an electric transformer, a controller, a loading feedback unit, and a switching transistor. The electric transformer includes a first side induction coil connected to an input power unit, a second side induction coil connected to a loading unit to generate an output power by electromagnetic induction with the first side induction coil, and an auxiliary induction coil generating a power sensing signal by electromagnetic induction with the first side induction coil. The loading feedback unit generates a loading feedback signal. The controller determines the level of loading based on the loading feedback signal and further detects the valleys of the power sensing signal so as to change the switching signal which controls the switching transistor at the optimal one of the valleys.
Abstract:
A method of eliminating vampire energy loss in battery charges is provided. Vampire energy loss occurs when an electronic or mechanical machine consumes energy while not being utilized for the purpose of its existence, for example, energy loss in re-charging consumer electronic devices. By employing the use of an electromechanical switching method that creates a conductive short circuit to the charger after disconnecting the charged target device, the vampire or no load energy loss can be eliminated with or without disconnecting the charger.
Abstract:
An apparatus includes a primary transformer circuit including a plurality of primary coils. The apparatus further includes a delta secondary transformer circuit configured to magnetically couple to the primary transformer circuit. The delta secondary transformer circuit includes a first plurality of secondary coils, a first plurality of nodes coupled to the first plurality of secondary coils, and a second plurality of secondary coils configured to magnetically couple to the plurality of primary coils. Each coil of the second plurality of secondary coils is physically coupled to a respective node of the first plurality of nodes.
Abstract:
An equivalent circuit of a converter (4) is represented by a series connection between an equivalent capacitor (41) and an equivalent resistor (42), and the converter (4) includes a controller that adjusts a power factor of the input power by controlling a capacitive reactance (Xc) of the equivalent capacitor (41).
Abstract:
A non-contact power supply device includes: a power transmission coil that generates a magnetic flux by an alternating current; a power transmission circuit that supplies the alternating current to the power transmission coil; a power transmission side control circuit that controls the power transmission circuit; a power receiving coil that generates an alternating current by interlinking the magnetic flux generated in the power transmission coil; and a power receiving circuit that converts the alternating current supplied from the power receiving coil into a direct current, and supplies the direct current to the power supply target. The power transmission side control circuit obtains a voltage vector target value based on a relationship between a voltage vector and a current vector, and controls the power transmission circuit to set the voltage vector of the alternating current output from the power transmission circuit to be the voltage vector target value.
Abstract:
The present invention is directed to a piezoelectric transformer based power converter that exhibits efficient operating point tracking ability while providing output regulation by means of simultaneous two-parameter control of the converter power stage. A regulation control stage provides the power stage a regulation control signal indicative of the difference between the measured output parameter and a set-point reference, therefore continuously controlling the gain of the converter to result in a stabilized, regulated output. Additionally, a frequency control stage simultaneously provides the power stage with a frequency control signal correlative to the difference between the current and desired operating points of the piezoelectric transformer. The power stage then translates the frequency control signal into an adjustment to the operational frequency of the input signal to the piezoelectric transformer, as to continuously drive the operating point to the desired position.
Abstract:
The switched power supply (10) comprises: an input (16) for an AC input current (IPRI) under an input voltage (VPRI); an output (36) for a DC output current (Isec), and successively, from the input to the output, a system of controlled breaker switches (20); a transformer (21) whereof the primary (24) is linked at the output of the system of controlled breaker switches (20); a rectifying circuit (28) connected across the terminals of a secondary circuit (26) of the transformer; and a storage capacitor (32) linked in parallel across the output terminals of the rectifier circuit (28) with interposition of a coil (34), the output (36) being formed across the terminals of the storage capacitor (32). The system of controlled breaker switches (20) is the only circuit between the input (16) and the output (36) to comprise switching members and in that it comprises means (22) for controlling the system of breaker switches (20) so as to control the amplitude of the input current (IPRI) as a function of the input voltage (VPRI) of the output current (Isec) and of the voltage (Vsec) across the terminals of the storage capacitor (32).
Abstract:
The present invention includes a high voltage transformer and high voltage inductor having a high resistivity magnetic core and multiple secondary windings without needing insulation between the high resistivity core and multiple secondary windings.
Abstract:
A matrix integrated magnetics (MIM) “Extended E” core in which a plurality of outer legs are disposed on a base and separated along a first outer edge to define windows therebetween. A center leg is disposed on the top region of the base and separated from the outer legs to define a center window. The center leg is suitably positioned along a second outer edge opposite the first or between outer legs positioned along opposing outer edges. A plate is disposed on the outer legs opposite the base.