摘要:
A divider of a DLL(delay locked loop) measures tAC for various periods due to variation of process, temperature and a supply voltage and provides a divided clock having an optimum tAC. The clock divider includes a clock dividing unit, a test mode clock providing unit and a normal mode clock providing unit. The clock dividing unit receives a source clock of the DLL to generate a plurality of divided clocks, each having a period different from each other. The test mode clock providing unit selectively outputs the plurality of the divided clocks in a test mode in response to a test mode signal and a test mode period selecting signal. And, the normal mode clock providing unit outputs selected one of the plurality of the divided clocks in a normal mode in response to the test mode signal.
摘要:
A counter stage generally comprises a flip-flop and a reset circuit. The flip-flop may be configured to toggle a flip-flop signal between a first and a second state in response to a count signal applied to a clock input to effect a counting operation. The reset circuit may be configured to reset the counter stage to a predetermined state without changing the state of the flip-flop signal.
摘要:
A semiconductor integrated circuit device includes a DLL circuit. The DLL circuit includes a frequency divider which frequency-divides an input clock at a frequency dividing ratio which is varied depending on a frequency of the input clock and thus results in a dummy clock and a reference clock. A delay system includes a variable delay circuit which delays the dummy clock. A control circuit controls a delay amount of the variable delay circuit so that a phase of a delayed dummy clock from the delay system and the reference clock becomes zero.
摘要:
A frequency divider circuit having N flip-flops connected in series, includes a logic circuit for monitoring at least one of the outputs of the N flip-flops and halting the frequency division operation of a prior stage flip-flop when the value of the output which is monitored is equal to a predetermined value when a reset signal is input, and restarting frequency division operation when the reset signal is cancelled.
摘要:
An asynchronous ripple counter counts from a predetermined binary value to zero in response to an input clock signal. Zero detection logic is coupled to the ripple counter for detecting, from a most significant bit to a least significant bit of the ripple counter, when the counter has counted to zero. Both the counter and the zero detection logic receive and store the predetermined binary value. The monitoring of the ripple counter's digits from MSB to LSB prevents false detections of zero states in the ripple counter and allows the ripple counter to be extended to an arbitrarily large number of bits without sacrificing the maximum input clock frequency.
摘要:
A frequency-dividing circuit comprises an asynchronous counter having a plurality of one-half frequency-dividers connected in series in a plurality of stages in which a master clock signal is applied to an input terminal of the initial stage, for asynchronously producing output signals of each of the one-half frequency-dividers, where the asynchronous counter is set with a preset data n (n is an integer) which is preset according to a desired frequency-dividing ratio when a load pulse is applied, a coincidence detection circuit for detecting the coincidence of a plurality of outputs supplied from the asynchronous counter, and a frequency-divided output signal and load pulse generation circuit supplied with the master clock signal and an output signal of the coincidence detection circuit, for generating a frequency-divided output signal and a load pulse. The frequency-divided output signal and load pulse generation circuit supplies a load pulse to the asynchronous counter.
摘要:
A motor control system includes a variable voltage supply in signal communication with a direct current (DC) motor. The DC motor includes a rotor induced to rotate in response to a drive current generated by a variable supply voltage delivered by the voltage supply. The rotation of the rotor 103 generates a mechanical force that drives a component. A ripple count circuit 104 is configured to filter the drive current based on a rotational speed (ω) of the rotor 103 to generate a filtered drive current signal, and to generate a varying threshold based on the filtered drive current signal. Based on a comparison between the filtered drive current signal and the varying threshold, the ripple count circuit 104 generates a pulsed output signal indicative of the rotational speed (ω) of the rotor and a rotational position (θ) of the rotor.
摘要:
A semiconductor standard cell of a flip-flop circuit includes semiconductor fins extending substantially parallel to each other along a first direction, electrically conductive wirings disposed on a first level and extending substantially parallel to each other along the first direction, and gate electrode layers extending substantially parallel to a second direction substantially perpendicular to the first direction and formed on a second level different from the first level. The flip-flop circuit includes transistors made of the semiconductor fins and the gate electrode layers, receives a data input signal, stores the data input signal, and outputs a data output signal indicative of the stored data in response to a clock signal, the clock signal is the only clock signal received by the semiconductor standard cell, and the data input signal, the clock signal, and the data output signal are transmitted among the transistors through at least the electrically conductive wirings.