Abstract:
Operating at least one low duty cycle (LDC) controller to maintain synchronization between the LDC controller and a plurality of LDC terminals operating over a communication network using only overhead channels of the network and conforming to the protocol and timing of said network, wherein synchronization between the LDC controller and the plurality of LDC terminals is maintained separately from the protocol and timing of the communication network, and enables the LDC controller to schedule power down and wake up of the plurality of LDC terminals for durations longer than allowable under the protocol and timing of the communication network.
Abstract:
A microcontroller has a timebase driven by a clock signal, wherein the timebase has a reset input and an output coupled with a comparator. The comparator is further coupled with a register and is operable to generate a synchronization output signal if the timebase matches the register value. The microcontroller further has a first multiplexer receiving the synchronization output signal from the comparator and further receiving at least one event signal generated by a unit other than the timebase, wherein the first multiplexer is operable to select either the synchronization output signal or the at least one event signal as a timebase synchronization output signal.
Abstract:
A method for transmitting a signal for cell searching in a mobile communication system having a multi-cell environment includes transmitting the signal to one or more receiving party devices within a cell, wherein the signal is used for a synchronization of the one or more receiving party devices within the cell, the signal is defined by a combination of a first code sequence derived from a first index and a second code sequence derived from a second index, and an identity of the cell is used for defining the combination of the first code sequence and the second code sequence.
Abstract:
A communication system processes blocks of input data that include control words and a packet of information words are received. The packet has a start preceded by ones of the control words and an end followed by others of the control words. When the block consists exclusively of information words, a one bit block header having a first sense is appended to the block to form a frame. When the block does not consist exclusively of information words, the block is condensed to accommodate a TYPE word, the TYPE word is generated and inserted into the block and a one bit block header is appended to the block to form the frame. When the block does not consist exclusively of information words the one bit block header has a second sense, opposite to the first sense. Use of a one bit block header reduces overhead. Forward error correction is also utilized.
Abstract:
Methods, transmitter, receiver and computer program product for transmitting or receiving data of a real-time communication event, the data being transmitted from the transmitter to a jitter buffer of the receiver. At least one processing parameter describing how data is to be processed for transmission from the transmitter to the jitter buffer in the real-time communication event is determined at the transmitter. Data is processed for transmission from the transmitter to the jitter buffer in accordance with the determined at least one processing parameter. Control information based on the determined at least one processing parameter is transmitted from the transmitter to the receiver, wherein the control information is for use by the receiver to control a state of the jitter buffer. The processed data is transmitted from the transmitter to the jitter buffer of the receiver in the real-time communication event.
Abstract:
A communication system includes a transmitter and receiver. The transmitter includes a detector configured to detect an error amount of an edge position of a pulse signal caused by sampling; and a multiplexer configured to include a value indicating the detected error amount in a multiplexed signal. The receiver includes a demultiplexer configured to demultiplex the multiplexed signal and output a value indicating an amplitude of the pulse signal and the value indicating the error amount of the pulse signal; and a corrector configured to correct an edge position of the pulse signal using the error amount of the pulse signal, where the edge position is obtained from the value indicating the amplitude of the pulse signal output from the demultiplexer.
Abstract:
A method, apparatus, and system for time synchronization are disclosed. The method comprising: obtaining a master sending time stamp, a slave receiving time stamp, a slave sending time stamp, and a master receiving time stamp; and adjusting the time of the slave clock according to the offset calculated from the time stamps to synchronize with the clock time of the master clock. With the present invention, in passband transmission systems that transmit signals continuously in units of symbols, the time synchronization is implemented between the master clock and the slave clock.
Abstract:
A signal processor includes a period detection section which detects that a period is currently used for communication of a frame; a pattern detection section which detects, from the received signal, a first signal pattern by which the end of communication of the frame is recognized; and an output processing section which outputs the received signal to a controller, configured to instruct, upon detection of the first signal pattern in the period being currently used for communication of a frame, the controller to halt startup of communication action of the next frame, until the period being currently used for communication of a frame comes to the end, to thereby reduce an event such that frames are transmitted from a plurality of communication devices simultaneously, and to thereby allow the communication action for the next frame to proceed correctly.
Abstract:
A method is disclosed for transmitting a multi-channel data stream comprising frames comprising a plurality of channels, the transmitting being done via a multi-transport tunnel from a first tunnel end-point to a second tunnel end-point, the multi-transport tunnel implementing at least one first carrier supporting a transport protocol with acknowledgement and at least one second carrier supporting a transport protocol without acknowledgement.More specifically, the invention proposes to introduce a delay in the sending of data ( >) via the first carrier as compared with the sending of data ( >) via the second carrier. Thus the invention guarantees the order of arrival of channels that are associated with a same piece of synchronization but are transmitted on distinct first and second carriers and come from the separation of a same multi-channel data frame.
Abstract:
If the number of frame synchronization protecting stages for the transmission signal is m (m is a natural number) and the number of protecting stages for the state notice information is n (n is a natural number), when the expression n≦m
Abstract translation:如果发送信号的帧同步保护级数为m(m为自然数),状态通知信息的保护级数为n(n为自然数),则表达式n <= m < nx2成立时,在使用时间X作为基准的与第k阶段(其中k为满足表达式m