Abstract:
The present invention is directed to a method for producing a cured tire filling composition and the composition resulting from such a method. A mixture of a polyisocyanate having an average functionality of at least 2.3; a high molecular weight polyol having a hydroxyl number in the range of about 20 to about 31 and having an actual functionality of greater than 2.1; 6 to 65 weight percent of a polar plasticizing extender oil; and no greater than 0.5 weight percent polyamine is cured in the presence of a catalyst to form a polyurethane elastomer having a vertical rebound of greater than about 60% based on ASTM D2632 and a Durometer hardness in the range of about 5 to 60 (Shore A). The mixture is used to fill a tire prior to curing the composition within the tire casing and results in a deflation-proof tire that has considerably longer road testing life than tire filling compositions currently available.
Abstract:
The present invention is directed to a method for producing a cured tire filling composition and the composition resulting from such a method. A mixture of a polyisocyanate having an average functionality of at least 2.3; a high molecular weight polyol having a hydroxyl number in the range of about 20 to about 31 and having an actual functionality of greater than 2.1; 6 to 65 weight percent of a polar plasticizing extender oil; and no greater than 0.5 weight percent polyamine is cured in the presence of a catalyst to form a polyurethane elastomer having a vertical rebound of greater than about 60% based on ASTM D2632 and a Durometer hardness in the range of about 5 to 60 (Shore A). The mixture is used to fill a tire prior to curing the composition within the tire casing and results in a deflation-proof tire that has considerably longer road testing life than tire filling compositions currently available.
Abstract:
The preferred embodiment is directed to a pneumatic tire having a plurality of layers of high density foam rubber formed therein and methods of manufacturing and installing the layers therein. The preferred method of forming the layers of fill to be inserted in the pneumatic tire casing includes the following steps. Forming an elongated strip of elastomeric material of a size sufficient to form at least two concentric layers in a predetermined size casing of a pneumatic tire at a manufacturing site. At least one dimension of the elongated strip is the same as at least one dimension of the two concentric layers when inserted in the casing. Formulating data sheet having information from which the elongated strips can be cut to form the at least two layers for at least one predetermined condition. Transporting the elongated strip of the elastomeric material and the data sheet to an installation site remote from the manufacturing site.
Abstract:
A vehicle for overcoming obstacles includes a wheel having an elastomeric flexible annulus upon which the wheel normally rides. Parallel spaced sprockets receive the annulus and include individual cogs which extend less radially outwardly than the annulus. When an obstacle is encountered, the flexible annulus yields, thereby enabling a protruding cog to engage the obstacle and pivot around it thereby lifting the vehicle over the obstacle.
Abstract:
A flat free pneumatic tire comprising a casing and a void free elastomeric filling material, which filling material is a polyurethane of (a) prepolymer of organic polyisocyanate and defined polyether or defined polyester and (b) a defined polyether or defined polyester, in the absence of foam producing material in the reaction zone. The elastomeric filling material itself. A two container article (system) adapted for producing said void free filling material where one container has said prepolymer reactant and the other container has the polyether or polyester reactant, as required.
Abstract:
A method for expanding and curing foamable elastomeric material which is placed within the cavity of a previously molded tire. The tire, filled with foamable rubber material, is mounted on a wheel rim and contacted with steam in an elemental oxygen-free atmosphere to simultaneously foam and cure the elastomeric material within the tire cavity.