Abstract:
A method and apparatus discloses a tray configured to house a hard-disk drive (“HDD”) using at least one semi-flexible anchoring strip. An HDD assembly device, in one aspect, includes a tray, a U-shaped semi-flexible anchoring frame, and an HDD. The tray has a base, a front panel, a first side panel, and a second side panel, wherein the first side panel and the second side panel includes tracks along longitudinal edges of the first and the second side panels. The U-shaped semi-flexible anchoring frame includes a front piece, a first strip, and a second strip, wherein the first strip is configured to fit in the track of the first side panel allowing the first strip to slide along the track of the first side panel. The HDD has at least two mounting holes on each side and able to seat in the U-shaped semi-flexible anchoring frame.
Abstract:
Systems, processes, and structures provide near-field transmit power measurement for MIMO wireless devices (DUT), such as for any of product development, product verification, and/or production testing. A test signal, such as comprising a pulse train signal, is provided to a MIMO device under test (DUT), wherein portions of the test signal controllably steered and sequentially transmitted from each of the device antennas, to one or more test antennas that are positioned in close proximity to the MIMO DUT. The near-field power of the received test signals is measured, to quickly and efficiently determine if one or more data streams of the MIMO DUT has a problem.
Abstract:
Systems, processes, and structures allow enhanced near-field testing of the uplink and/or downlink performance of MIMO wireless devices (DUT), such as for any of product development, product verification, and/or production testing. Signal channels may preferably be emulated to test the performance of a device under test (DUT) over a range of simulated distances, within a near-field test environment. An enhanced process provides automated testing of a DUT over a wireless network, e.g. such as but not limited to a WLAN. The enhanced MIMO channel emulator may preferably be operated over a high dynamic range.
Abstract:
Methods and apparatus for automatically receiving and using a media access control address in router communications. If an ISP will authorize network communication only with a particular media access control address, a router can automatically use a non-native media access control, i.e. the media access control address registered with the ISP.
Abstract:
A dual band LTE small cell base station communicates on both licensed bands and unlicensed bands. The small cell base station modifies the communication protocol utilized by the licensed band to enable communication over an unlicensed band. This modification involves replacing the physical (PHY) layer of the licensed band communication protocol with the PHY layer of a to-be-used protocol in an unlicensed band.
Abstract:
A client device is configured to communicate with an access point over a wireless network, exchanging data with the access point over a selected communication channel. After the wireless connection to the access point has ended, the client device receives a probe from the access point over a low-level layer, such as a data link layer. In response to receiving the probe, the client device reconnects to the access point.
Abstract:
A dual band LTE small cell base station communicates on both licensed bands and unlicensed bands. The small cell base station modifies the communication protocol utilized by the licensed band to enable communication over an unlicensed band. This modification involves replacing the physical (PHY) layer of the licensed band communication protocol with the PHY layer of a to-be-used protocol in an unlicensed band.
Abstract:
Wireless communication under IEEE 802.11 standards utilizing carrier specific interference mitigation where an AP or UE employs an ultra-wideband tuner to evaluate available spectrum between several communication bands. Rather than being constrained to communicate in a single communication band, the AP and UEs may utilize more than one communication band to communicate with one another. In doing so, the AP and UE search across several bands and measure interference on a carrier-by-carrier basis across those bands. Either of the AP and UE may select a cluster of carriers for communication, where the cluster of carriers may comprise 1) contiguous carriers in a single sub-channel, 2) contiguous carriers spanning across more than one sub-channel, 3) discontinuous carriers in a single sub-channel, or 4) discontinuous carriers spanning across more than one sub-channel. The mapping between a cluster and its carriers can be fixed or reconfigurable.
Abstract:
An antenna for reducing Electromagnetic Interference (EMI) using a dielectric insert with a feedline tunnel is disclosed. The antenna comprises a first metallic portion, a second metallic portion, a plastic insert, and a cable. The first and second metallic portions held together by the plastic insert, which bridges a gap separating both portions. Both portions include trough-shaped shells and conduits, the conduits configured to be disposed inside the shells and connected to the shells. The cable is configured to pass through a tunnel belonging to the plastic insert and configured to communicate signals to the antenna, the cable comprising an electrically insulative shielding configured to be grounded to one of the metallic portions, and an electrically conductive core encapsulated by the shielding and configured to be connected to the other metallic portion.
Abstract:
A multi-band network node has selectable backhaul/fronthaul configurations. Network nodes provide multi-band operation to take advantage of higher Internet speeds and to support lower latency (> 2 Gbps,