Abstract:
A system for discriminating degradation of an exhaust purification system of an internal combustion engine having an adsorbent installed at a bypass exhaust gas passage branched from an exhaust pipe of the engine, which is opened by a switch-over valve at starting of the engine to introduce the exhaust gas such that the adsorbent adsorbs unburned HC in exhaust gas generated by the engine and is closed such that the adsorbent desorbs the adsorbed HC and the desorbed HC is thereafter recirculated at a position upstream of a catalyst. In the system, an inflow amount and outflow amount of HC flowing in and out of the adsorbent are determined based at least on the engine operating conditions and the detected concentration of HC. Then, the ratio therebetween is calculated and compared with a threshold value and if the ratio is less than the threshold value, the adsorbent is discriminated to be degraded, thereby enabling to improve the discrimination accurately.
Abstract:
A system for discriminating degradation of an exhaust purification system of an internal combustion engine having an adsorbent installed at a bypass exhaust gas passage adsorbing unburned HC in exhaust gas generated by the engine. Based on the assumption that the degradation of the adsorbent made from zeolite progresses or advances depending on its temperature, the temperature is detected and if it exceeds a predetermined temperature, an index indicative of the degree of degradation progress is determined based on a surplus exceeding the predetermined temperature. The index is accumulated to be compared with a threshold value and the adsorbent is discriminated to be degraded when the accumulated index exceeds the threshold value, thereby enabling to discriminate the adsorbent degradation accurately with a simple configuration.
Abstract:
While the amount of intake air introduced into an internal combustion engine is being increased by an intake air quantity control unit, an ignition timing control unit manipulates the ignition timing of the internal combustion engine to converge the rotational speed of the internal combustion engine to a target rotational speed according to a feedback control process (PI control process). The ignition timing control unit has a function to vary the feedback gain of the feedback control process depending on the ignition timing, such that the feedback gain is smaller as the ignition timing being manipulated is more retarded.
Abstract:
A plant control system has a reference value setting unit for variably setting a reference value for an air-fuel ratio to be given to an exhaust system including a catalytic converter, depending on a component based on an adaptive control law of a manipulated variable of the air-fuel ratio generated by a controller according to an adaptive sliding mode control process in order to converge an output of an O2 sensor disposed downstream of the catalytic converter to a target value. The plant control system also has an estimator for estimating the difference between an output of the O2 sensor after the dead time of the exhaust system and a target value therefor, using the difference between the set reference value and a detected value of the air-fuel ratio, and giving the estimated difference to the controller.
Abstract:
A downstream exhaust system controller generates a target value for the output of an upstream O2 sensor disposed between first and second catalytic converters for converging the output of a downstream O2 sensor disposed downstream of the second catalytic converter to a target value while taking into account the dead time of a downstream exhaust system. An upstream exhaust system controller generates a target air-fuel ratio for an internal combustion engine for converging the output of the upstream O2 sensor to a target value while taking into account the dead time of an upstream exhaust system. A fuel processing controller controls the air-fuel ratio of the internal combustion engine at the target air-fuel ratio according to a feedback control process.
Abstract:
A plant control system for controlling a plant includes an actuator for generating an input to the plant and a first detector for detecting an output from the plant. A manipulated variable determining unit determines a manipulated variable which determines the input to the plant according to a sliding mode control process such that an output from the first detector will be equalized to a predetermined target value. The manipulated variable determining unit determines the manipulated variable to converge a plurality of state quantities, which comprise differences between a plurality of present and previous time-series data of the output of the first detector and the target value, onto a balanced point on a hyperplane for the sliding mode control process, which is defined by a linear function having variables represented respectively by the state quantities.
Abstract:
A control system for a plant includes a sensor for detecting an output from the plant, an adaptive controller for controlling a manipulated variable applied to control of the plant in a manner such that an output from the sensor becomes equal to a desired value, and an adaptive parameter vector-adjusting mechanism for adjusting an adaptive parameter vector used by the adaptive controller. The adaptive parameter vector-adjusting mechanism is constructed such that an updating component for updating the adaptive parameter vector is added to an initial value of the adaptive parameter vector, and updates the adaptive parameter vector by multiplying at least part of preceding values of the updating component by a predetermined coefficient which is larger than 0 but smaller than 1.
Abstract:
An air-fuel control system for use with an internal combustion engine has a catalytic converter disposed in an exhaust system of the engine, for purifying an exhaust gas emitted from the engine, a first exhaust gas sensor disposed in the exhaust system for detecting an air-fuel ratio of the exhaust gas upstream of the catalytic converter, a second exhaust gas sensor disposed in the exhaust system for detecting the concentration of a component of the exhaust gas which has passed through the catalytic converter, downstream of the catalytic converter, and a control unit for controlling an air-fuel ratio of the engine based on outputs from the first exhaust gas sensor and the second exhaust gas sensor. The control unit includes an adaptive sliding mode controller for determining a correction quantity to correct the air-fuel ratio of the engine so as to equalize the concentration of the component of the exhaust gas downstream of the catalytic converter to a predetermined appropriate value, according to an adaptive sliding mode control process based on the output from the second exhaust gas sensor, and a feedback controller for controlling a rate at which fuel is supplied to the engine so as to converge the concentration of the component of the exhaust gas downstream of the catalytic converter toward the predetermined appropriate value, based on the correction quantity and the output from the first exhaust gas sensor.