Abstract:
Systems and methods are provided for evaluating and sorting seeds based on characteristics of the seeds. One method generally includes collecting image data from different parts of the seeds, and then analyzing the collected image data to determine if the seeds exhibit at least one or more characteristics. The seeds can then be sorted to desired seed repositories based on whether or not the seeds exhibit the at least one or more characteristics.
Abstract:
A surface chemistry measuring apparatus includes a processor, an array of tunable infrared laser spectrometers interfacing with the processor and configured for simultaneous measurement of surface chemistry across a surface to be measured using a range of infrared wavelengths and a display interfacing with the processor and adapted to display IR spectra of infrared wavelengths reflected from the surface to be measured.
Abstract:
This disclosure concerns systems and methods for identifying and selecting a more accurate chemometric model for the analysis of specific plant samples via near infrared spectrometry. This disclosure further concerns the use of such systems and methods to identify characteristics and traits of interest in plants and plant samples, for example, to facilitate selective breeding, quality control, and/or inventory control.
Abstract:
The present invention relates to a method for measuring the characteristics of a downhole fluid. The method for measuring the characteristics of a downhole fluid includes passing a downhole fluid sample through an analyzer, analyzing the downhole fluid sample by illuminating the downhole fluid sample with light from a light source and detecting light that interacts with the fluid sample. The method is applicable to detecting carbon dioxide and/or hydrogen sulfide directly in a downhole environment.
Abstract:
A Method and apparatus to accurately measure and display various properties of hydrocarbons and petroleum factions for a small volume of sample in a short period of time in one test with less cost and energy for the analysis by the method of light refection. The refraction of light through the sample is measured and compared to the refraction f the light through vacuum by the apparatus. The method of the invention comprises a property estimation from the apparatus to output a property estimate value. The property estimation means is equipped with a property estimation model for evaluating the property estimate value outputted from the property estimation model. The method is incorporated into standard or otherwise any refractive index test apparatus or refractometer to provide accurate measure of the thermodynamic and transport properties of pure hydrocarbons and undefined multicomponent mixtures such as petroleum factions.
Abstract:
Disclosed are methods and devices for continuous in vivo monitoring of a potential bacterial infection site. Disclosed devices may be utilized to alert patients and/or health care providers to the presence of pathogenic bacteria at an early stage of a hospital acquired infection, thereby providing for earlier intervention. Disclosed methods utilize optical fibers to deliver an excitation signal to an area in which pathogenic bacteria may exist. In the presence of the excitation signal, bacterial pathogens may autofluoresce with a unique spectral signature. Upon generation of a fluorescent emission, an optically detectable emission signal may be transmitted to a detection/analysis device. Analysis of the characteristics of the emission signal produced in response to the excitation signal may be used to determine the presence or concentration of pathogens at the site of inquiry, following which real time information may be transmitted to medical personnel via a wireless transmission system.
Abstract:
An apparatus and method for noninvasive determination of analyte properties of human tissue by quantitative infrared spectroscopy to clinically relevant levels of precision and accuracy. The system includes subsystems optimized to contend with the complexities of the tissue spectrum, high signal-to-noise ratio and photometric accuracy requirements, tissue sampling errors, calibration maintenance problems, and calibration transfer problems. The subsystems can include an illumination/modulation subsystem, a tissue sampling subsystem, a data acquisition subsystem, a computing subsystem, and a calibration subsystem. The invention can provide analyte property determination and identity determination or verification from the same spectroscopic information, making unauthorized use or misleading results less likely than in systems that use separate analyte and identity determinations. The invention can be used to control and monitor individuals accessing controlled environments.
Abstract:
A Method and apparatus to accurately measure and display various properties of hydrocarbons and petroleum factions for a small volume of sample in a short period of time in one test with less cost and energy for the analysis by the method of light refection. The refraction of light through the sample is measured and compared to the refraction f the light through vacuum by the apparatus. The method of the invention comprises a property estimation from the apparatus to output a property estimate value. The property estimation means is equipped with a property estimation model for evaluating the property estimate value outputted from the property estimation model. The method is incorporated into standard or otherwise any refractive index test apparatus or refractometer to provide accurate measure of the thermodynamic and transport properties of pure hydrocarbons and undefined multicomponent mixtures such as petroleum factions.
Abstract:
Described are computer-based methods and apparatuses, including computer program products, for monitoring, detecting, and quantifying chemical compounds in a sample. A sample measurement comprising a digitized spectroscopic profile is received. A multivariate multistage background model comprising a first model that models a first time effect, a second model that models a second time effect that is different than the first time effect, or both is calculated. A background corrected sample measurement based on the sample measurement and the multivariate multistage background model is generated. A multivariate multistage library search, fault detection, and quantification algorithm is executed to identify one or more primary chemicals in the background corrected sample measurement. The search, detection, and quantification algorithm includes identifying one or more candidate chemicals in the background corrected sample measurement based on a multivariate statistical process control and identifying and quantifying a first primary chemical based on a focused chemical evaluation of the one or more candidate chemicals.
Abstract:
The present invention further relates to the selection of the specific filter combinations, which can provide sufficient information for multivariate calibration to extract accurate analyte concentrations in complex biological systems. The present invention also describes wavelength interval selection methods that give rise to the miniaturized designs. Finally, this invention presents a plurality of wavelength selection methods and miniaturized spectroscopic apparatus designs and the necessary tools to map from one domain (wavelength selection) to the other (design parameters). Such selection of informative spectral bands has a broad scope in miniaturizing any clinical diagnostic instruments which employ Raman spectroscopy in particular and other spectroscopic techniques in general.