Abstract:
A method for calibrating a transmitter with measurement circuitry electrically connected to first and second input terminals includes connecting a primary temperature sensor to the first input terminal and connecting a calibrated reference device to the second input terminal. The measurement circuitry is calibrated with respect to the first input terminal according to signals received from the second input terminal while measuring temperature according to signals received from the first input terminal.
Abstract:
An industrial process variable transmitter includes a process variable sensor configured to sense a process variable. Measurement circuitry is coupled to the process variable sensor and provides a measured output as a function of the process variable. Output circuitry includes a loop connection configured to couple to a process control loop. An optical sensor receives the measured output from the measurement circuitry. A switching device applies pulses to the process control loop in response to an output from the optical sensor. Power supply circuitry powers the optical sensor, a comparator, and/or the switching device with power received from the process control loop and loop connection.
Abstract:
A process pressure transmitter system includes a process pressure transmitter housing, a process pressure sensor in the process pressure transmitter housing, a flange face in the process pressure transmitter housing and an isolation diaphragm on the flange face. A first capillary passageway carries a first fill fluid from the isolation diaphragm to the process pressure sensor. A process seal diaphragm couples to a process fluid of the industrial process. A second capillary passageway carries a second fill fluid from the process seal diaphragm to the isolation diaphragm. A diamond like carbon (DLC) coating coats the process seal diaphragm.
Abstract:
A process temperature transmitter is operable with at least one temperature sensor having a plurality of leads. The temperature transmitter includes measurement circuitry operably coupleable to the at least one temperature sensor to provide an indication of an electrical parameter of the at least one temperature sensor. A controller is coupled to the measurement circuitry to obtain the indication and provide a process temperature output. A current source applies a test current to the plurality of leads simultaneously. Diagnostic circuitry measures a voltage response on each lead in order to provide a diagnostic indication of the temperature sensor.
Abstract:
A field device includes a housing and a process variable transducer configured to measure or control a process variable in an industrial process. Field device circuitry in the housing is coupled to the process variable transducer. A meter body mount is carried in housing. A meter is affixed to the meter body mount by an attachment mechanism. The meter includes a display element. A cover seals the meter in the housing.
Abstract:
A process variable transmitter is configured as a flowmeter for measuring flow of a process fluid through a conduit. The transmitter includes a pitot tube extending into the conduit which creates a differential pressure in the process fluid due to flow of the process fluid. An upstream process variable sensor is mounted on the pitot tube and coupled to the flow of process fluid to sense an upstream process variable of the process fluid. A downstream process variable sensor is mounted on the pitot tube downstream of the upstream process variable sensor and coupled to the flow of process fluid to sense a downstream process variable of the process fluid. Measurement circuitry determines the flow of the process fluid based upon the upstream process variable and the downstream process variable.
Abstract:
A sensor probe comprises a tube, a sensor element and an absorber mass. The tube is for placement in a process fluid flow within a fluid conduit and comprises a first end for coupling to the fluid conduit and a second end for insertion into the process fluid flow. The sensor element is in communication with the tube. The absorber mass is coupled to the tube and is configured to dampen vibration of the tube when inserted in the process fluid flow.
Abstract:
A diagnostic field device for detecting a condition of a process conduit includes an infrared detector comprising a plurality of pixels configured to receive infrared radiation from the process conduit and responsively provide a plurality of pixel outputs. A first pixel of the plurality of pixels is configured to receive infrared radiation from a first location on the process conduit. A second pixel of the plurality of pixels is configured to receive infrared radiation from a second location on the process conduit. A memory contains thermal profile information which relates an output from the first pixel to a first temperature at the first location and relates an output from the second pixel to a second temperature at the second location. A microprocessor identifies a process anomaly based upon outputs from the first and second pixels. Output circuitry provides a diagnostic output indicative of the identified process anomaly.
Abstract:
A modular, intrinsically-safe power module assembly is provided. The assembly includes a rigid conduit adapter configured to mount to a conduit of a field device. A housing, having an interior, is operably coupled to the rigid conduit adapter and is physically supported by the rigid conduit adapter. At least one non-rechargeable battery is disposed within the housing. Intrinsic safety circuitry is coupled to the at least one non-rechargeable battery, and is coupled to a connector that mates with a cooperative connector in the rigid conduit adapter.
Abstract:
A process variable transmitter is used to measure a process variable, and, in doing so, dynamically changes the resolution of the A/D converter based upon the measured value of the analog input signal. This can be done by automatically adjusting the configurable resolution gain adjustment based on the value of the analog signal being measured, by normalizing the input signal being measured so that it is centered in an optimal resolution window of the A/D converter, or by adjusting a voltage reference provided to the A/D converter.