Abstract:
The present invention provides a wide-filed spectral imaging system including a laser generator, a wavelength adjustment module, an objective lens, and a single-pixel imaging and a spectral separating module. The laser generator is configured to generate a laser excitation beam. The wavelength adjustment module is configured to disperse the laser excitation beam into a plurality of beams of different wavelengths. The objective lens is configured to focus the plurality of beams of different wavelengths on a sample to excite molecules under test in the sample and generate an emission light. The single-pixel imaging and spectral separating module is configured to generate a series of patterns and modulate the emission light with the series of patterns to generate a diffracted beam. The single-pixel imaging and spectral separating module further disperses the wavelength of the diffracted beam, collects light signals of the expanded diffracted beam, and performs a spectral image reconstruction.
Abstract:
A spectrometer is provided. In one implementation, for example, a spectrometer comprises an excitation source, a focusing lens, a movable mirror, and an actuator assembly. The focusing lens is adapted to focus an incident beam from the excitation source. The actuator assembly is adapted to control the movable mirror to move a focused incident beam across a surface of the sample.
Abstract:
A system for non-invasively interrogating an in vivo sample for measurement of analytes comprises a pulse sensor coupled to the in vivo sample for detect a blood pulse of the sample and for generating a corresponding pulse signal, a laser generator for generating a laser radiation having a wavelength, power and diameter, the laser radiation being directed toward the sample to elicit Raman signals, a laser controller adapted to activate the laser generator, a spectrometer situated to receive the Raman signals and to generate analyte spectral data; and a computing device coupled to the pulse sensor, laser controller and spectrometer which is adapted to correlate the spectral data with the pulse signal based on timing data received from the laser controller in order to isolate spectral components from analytes within the blood of the sample from spectral components from analytes arising from non-blood components of the sample.