Abstract:
The present disclosure provides a non-overlap data transmission method for a liquid crystal display (LCD). The non-overlap data transmission method includes obtaining an entire fame image data; dividing the entire frame image data into a plurality of image data segments and individually sending the image data segments to a plurality of display processing units at the same time, wherein each of the image data segments is sent to one of the display processing units and image data of each image data segment does not overlap with image data of the other image data segments; and mutually sending image data of the image data segments through the display processing units.
Abstract:
An analog to digital conversion method includes charging a capacitor through an analog signal to sample a voltage of the analog signal; coupling the capacitor and a plurality of reference voltages to a comparator when a voltage of the capacitor is equal to the voltage of the analog signal, to compare the voltage of the capacitor with the reference voltages and generate a first comparison result; coupling the capacitor to a ramp generator when a status of the first comparison result changes, to compare a ramp signal of the ramp generator with a voltage difference of a first reference voltage and the voltage of the capacitor and generate a second comparison result; obtaining a voltage of the ramp signal when a status of the second comparison result changes; and obtaining a digital code of the analog signal according to the first reference voltage and the voltage of the ramp signal.
Abstract:
A layout method applied to a connector is provided. The connector is electrically connected between a flexible printed circuit (FPC) and a printed circuit board (PCB). The FPC includes M pairs of differential lines and X shield lines. The PCB includes M pairs of differential lines and Z shield lines. The layout method includes following steps. Firstly, M pairs of conductive lines are disposed on the connector. The M conductive lines are correspondingly electrically connected to the M differential lines of the FPC and the M differential lines of the PCB. Then; Y conductive lines are disposed on the connector, wherein Y is smaller than X. Furthermore, at least one of the Y conductive lines is electrically connected to at least one of the X shield lines and at least one of the Z shield lines.
Abstract:
An image sharpening method and an image processing device are provided. The method includes: obtaining a plurality of pixels in an image; calculating a first weight of a high pass filter and a second weight of a first filter according to the pixels, and the first filter is a convolution of the high pass filter and a low pass filter; generating a sharpening filter according to the high pass filter, the first weight, the first filter and the second weight; and executing a sharpening operation on the pixels according to the sharpening filter. Accordingly, a sharpened image has better vision effects.
Abstract:
An operational amplifier circuit includes an output stage circuit. The output stage circuit includes a first and a second output transistors, a capacitor unit, and a switch unit. A drain of the first output transistor is coupled to a drain of the second output transistor via an output terminal of the output stage circuit. The switch unit is coupled between gates of the first and the second output transistors and coupled to a first terminal of the capacitor unit. A second terminal of the capacitor unit is coupled to the output terminal of the output stage circuit. The switch unit determines to conduct a signal transmission path between the gate of the first output transistor and the first terminal of the capacitor unit or conduct a signal transmission path between the gate of the second output transistor and the first terminal of the capacitor unit according to a control signal.
Abstract:
A source driver and a method for determining polarity of pixel voltage thereof are provided. The source driver includes a data register unit, a plurality of data groups and a plurality of polarity determining units. The data register unit receives an image data signal and provides a plurality of display data. The data groups have at least two data channels respectively. The data channels are coupled to the data register unit to receive the corresponding display data and provide a plurality of pixel voltages. The polarity determining units are respectively coupled to the data channels corresponding to different data groups, and each of the polarity determining units determines whether to invert polarities of a part of the pixel voltages provided by the coupled data channels according to the received display data of the coupled data channels and previous display data corresponding to the received display data.
Abstract:
A touch display device and a method for sensing capacitance thereof are provided. The touch display device includes a display panel having a plurality of liquid crystal pixels, a source driver, a touch panel having a plurality of touch areas, a touch sensing circuit and a crosstalk compensation unit. The source driver writes a plurality of pixel voltages into the liquid crystal pixels according to a plurality of display data. The touch panel is disposed and overlapped with the display panel. The touch sensing circuit senses a capacitance variation amount corresponding to each of the touch areas. The crosstalk compensation unit is coupled to the touch sensing circuit to receive the capacitance variation amount corresponding to each of the touch areas and corrects the capacitance variation amounts according to a plurality of capacitance crosstalk values corresponding to the liquid crystal pixels so as to provide a plurality sensing signals.
Abstract:
A source driver and a method to reduce peak current of the source driver are provided. The source driver includes a latch circuit, a level shifter and a digital-to-analog converter (DAC) circuit. The latch circuit latches current bit-data. The latch circuit is coupled to an input terminal of the level shifter. The DAC circuit is coupled to an output terminal of the level shifter. When the current bit-data is not a complement of previous bit-data, the latch circuit selects and outputs the current bit-data to the input terminal of the level shifter, and the DAC circuit outputs a voltage corresponding to the output data of the level shifter. When the current bit-data is the complement of the previous bit-data, the latch circuit selects and outputs the previous bit-data to the input terminal of the level shifter, and the DAC circuit outputs a voltage corresponding to the current bit-data.
Abstract:
A method for positioning a mobile device in a wireless wide area network (WWAN) is provided. The method includes determining three measurement circles according to coordinates of three base stations and respectively calculating radiuses of the three measurement circles and distances between the three base stations. The method uses genetic algorithm to derive the best solution of a plurality of variables of an object function and estimates the position of the mobile device according to the best solution. Accordingly, non-line-of-sight (NLOS) errors are reduced, and more accurate positioning can be provided.
Abstract:
A single flexible printed circuit (FPC) board for connecting multiple modules including a thin film is provided. The thin film has a first module connecting portion, a second module connecting portion and a third module connecting portion. The first module connecting portion is located on a first side of the thin film. The second module connecting portion and the third module connecting portion are located on a second side of the thin film. The first side is opposite to the second side. At least one first line is disposed between the first module connecting portion and the second module connecting portion. At least one second line is disposed between the first module connecting portion and the third module connecting portion.